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Received 13 October 2021; received in revised form 17 February 2022; accepted 7 March 2022
Available online 12 March 2022
Abstract

In this paper, a gyrostat satellite in a circular orbit with its gyrostatic moment tangent to the orbital plane and collinear with the
orbital speed is studied regarding its equilibria, bifurcation of equilibria, and asymptotic stability conditions. In the general case, where
any gyrostat angular momentum is aligned with any of the orbital coordinate frames, interesting results arose regarding its equilibria
bifurcation regarding conditions near to the ones presented in this paper, namely equilibria regions outside their main regions near
to the orbital plane tangent. For equilibria and bifurcation of equilibria, a symbolic-numerical method is used to obtain the polynomial
equations in function of non-dimensional parameters whose roots are equivalent to the number of equilibria positions. For the asymp-
totic stability, the results are tested using the Lyapunov stability theory scheme.
� 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Artificial satellites provide services vital for the global
economy, like telecommunication and navigation. Space-
based Earth observation and space monitoring are also
intrinsic satellite usages and critical for understanding
and addressing global challenges. The deployment of large
constellations of satellites in low-Earth orbit, addressing
the increasing need for the globalisation of affordable satel-
lite coverage, has been underway and will be in the plans of
several private companies for the next few years. This
recent increase, and because the space sector is becoming
very competitive, lead the sector to more effectiveness of
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space technology. So, companies that consider bigger lifes-
pan, cheaper systems and enhanced capabilities are crucial
to capture market share within the space sector, and to ful-
fil this, a deep understanding of satellite and orbital
dynamics are required. It has long been recognised that
introducing an angular momentum source into a satellite
can be used to manipulate the equilibria and stability prop-
erties. Therefore, a gyrostat satellite can be modelled as a
rigid body containing a source of constant angular momen-
tum whose alignment changes based on the analysis. The
satellite is in a circular orbit in a perfect inverse square
law gravitational force field.

Longman (1968a) found all equilibrium orientations rel-
ative to gravitational torques for a gyrostat satellite whose
internal angular momentum is along a principal axis of the
body. For small enough angular momentums, twenty-four
discrete equilibrium orientations were discovered, coincid-
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ing with the well-known 24 equilibria of a rigid body. As
the angular momentum increases, these discrete solutions
disappear, as groups of four, until the only solutions left
are those which have the rotor axis aligned with the per-
pendicular to the orbital plane.

Longman (1968b), Longman and Roberson (1969) con-
sidered the design of satellite equilibria and stabilisation
conditions using gravity gradient methods with the aid of
angular momentum wheels. These studies also focus on
the theoretical design tenets which influence the satellite
equilibria and stability, considering the symmetric rotors
change in direction and magnitude.

The behaviour of a special class of gyrostat configura-
tions, which have the internal angular momentum vector
lying in any plane formed by two principal axes of the
satellite, was determined by Longman (1971). The author
then studies its equilibria and stability, finding a new set
of previously undescribed eight equilibrium orientations,
together with two previously treated sets of eight orienta-
tions (Longman, 1968a), the maximum equilibrium orien-
tations add-up to twenty-four.

Longman (1972) performed a stability analysis of all
possible equilibria for gyrostat satellites under gravita-
tional torques. It showed that, for the case where the axis
of intermediate moment of inertia lies any place in the orbi-
tal plane, the found solutions form a boundary dividing
those satellites that can be made Lyapunov stable from
those that cannot. The division is influenced by choosing
a sufficiently large component of internal angular momen-
tum along the perpendicular to the orbital plane. Longman
(1972) concluded that any configuration in the Lyapunov
stable region can be considered in preliminary satellite
design.

Longman (1973) noticed two families of equilibria for a
given angular momentum, resulting in a tumbling motion.
The stability of the tumbling motion was investigated, as
well as the stability of the isolated equilibria. This motion
was also studied by Kuang and Tan (2002), where a
GPS-based attitude determination methodology was
employed, resulting in the suppression of the gyrostat satel-
lite tumbling motion with the proposed linear regulators.

The issue of passing from a gravity-gradient stabilised
attitude to another equilibrium attitude by using a proper
control of the rotors’ angular speed is addressed by
Anchev (1973), once again assuming a circular orbit, an
inverse square gravitational field, and that the attitude of
the satellite has no effect on the orbit.

Longman (1975) studied the conditions for which a
satellite stabilised by the gravity gradient method, with
constant angular momentum internal wheels, is designed
to know all the earth pointing equilibrium orientations
since the spacecraft may inadvertently acquire unfavour-
able orientations. The author also reviewed the literature
containing solutions to various special cases of the finding
equilibria problem. A method for ascertaining the equilib-
ria and stability is given for the most general case, and a
numerical example is exhibited using said method.
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The hitherto studies assumed that the spinning symmet-
ric rotors are perfectly maintained at constant speed. This
idealisation is not always feasible and a more realistic
approach is to consider that the rotor is regulated by a
feedback control system. Therefore, Li and Longman
(1982) studied the relationship between stability results
using these idealised models and the stability results
obtained using the more realistic feedback controlled rotor
model for the full range of feedback gains.

The difficulty of finding attitude equilibria of the gyro-
stat with respect to the orbiting frame can be approached
in two ways: (a) a direct method in which the gyrostat satel-
lite with a specified relative angular momentum vector is
given and the set of all possible equilibrium orientations
is obtained; (b) an inverse method in which we choose
the orientation of the satellite and then try to find the cor-
responding angular momentum vector that makes this ori-
entation an equilibrium. Pascal and Stepanov (1991)
selected a compromise between the two and performed a
semi-inverse method in which some parameters giving the
equilibrium orientation of the satellite and some compo-
nents of the angular momentum vector are chosen arbitrar-
ily, with the aim of finding new solutions to this method.

Since the turn of the century, the study of a gyrostat
satellite dynamics on a circular orbit with constant angular
momentum lied mainly on the influence of different orien-
tations of the internal angular momentum vector on the
satellite’s stability and dynamics. Rubanovskii (1991) stud-
ied the bifurcation and stability for the case when the rotor
axis does not lie in a system principal plane of inertia.
Saryshev and Mirer (2001) found a new analytical solution
of all equilibria for the case where the internal angular
momentum of the gyrostat satellite is collinear to its prin-
cipal axis of inertia. Following the 2001 study, Sarychev
et al. (2005) determined the bifurcation values and showed
the evolution of the regions of validity, for the same partic-
ular case, while Sarychev et al. (2008) studied the special
case where the gyrostatic moment vector lies in one of
the satellite’s principal central planes of inertia. Molina
and Mondéjar (2004) focused on the motion of a satellite
that had, in the first case, spherical symmetry, and in the
second case, axial symmetry. Shirazi and Ghaffari-Saadat
(2005) considered the attitude dynamics of an asymmetrical
gyrostat satellite, while Chaikin (2013) studied the case
where the angular momentum aligns with the gyrostat prin-
cipal central plane of inertia. Gutnik and Sarychev (2017)
focused on the special case when the projection of the vec-
tor of gyrostatic torque is located in one of the principal
central planes of inertia of the satellite.

The previous studies on the special cases of the angular
momentum alignment improved the general case’s com-
mon understanding and analysis. As such, the focus of
determining the satellite’s equilibrium orientation shifted
to the case where the angular momentum is not aligned
with any principal axis nor with the orbital coordinate
frame. Sarychev et al. (2012) studied the equilibria of a
gyrostat satellite and the number of solutions was proved



Fig. 1. Relation between Orbital and Gyrostat’s reference frames
Longman, 1972.
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to be no less than 8 and no more than 24, as previously
established. The following year, the stability conditions
study led Sarychev et al. (2013) to perceive that the stable
solutions decrease from 4 to 2 as the gyrostatic torque
increases. Gutnik and Sarychev (2013), Gutnik and
Sarychev (2014) adopted a different method which starts
with the usage of an algorithm for the Groebner bases’
construction and results in a conversion of the 9-
equations/9-variables system into a 12th order algebraic
equation with a single variable. Gutnik et al. (2015),
Santos (2015) conducted a deep analysis of different equi-
libria and stability. Santos and Melicio (2020) described
the number of equilibria orientations of the general case,
when its angular momentum is not aligned with any prin-
cipal axis of the satellite nor with any orbital coordinate
frame. A complete numerical analysis was then performed
to understand the evolution of the number of equilibria ori-
entations. This analysis led to the detection of small equi-
libria regions when the vector of gyrostatic moment is
tangent to the orbital plane. To confirm the existence of
these regions, the current work intends to study this partic-
ular case, when the vector of gyrostatic moment is tangent
to the orbital plane, to shed light on these solutions.

Other relevant studies have been researched, such as the
dynamics of dual-spin spacecraft under effects of energy
dissipation, where the damper masses in the platform and
the rotor cause energy loss in the system (Nazari and
Butcher, 2014), and the momentum transfer control of a
torque-free gyrostat with a discrete damper, which uses
an adaptive feedback linearisation method combined with
neural networks (Seo et al., 2008). Zanardi and Moreira
(2007) developed an analytical approach for the gyrostat
attitude propagation using non-singular canonical vari-
ables to describe the rotational motion. Wang and Xu
(2012) studied the relative equilibria of a rigid body, using
geometric mechanics, when considering the J2 perturba-
tions of an oblate gravitational field. Guirao and Vera
(2010) analysed a gyrostat dynamics in the frame of the
three-body problem using geometrical and mechanics
methods to describe the Eulerian equilibria and to study
their bifurcation, while Vera (2009) employed the same
non-canonical Hamiltonian dynamics approach to the
three-body problem for a triaxial gyrostat. Ousaloo
(2016) developed a control scheme to overcome the nuta-
tion motion of an asymmetric satellite, independent of its
inertia, by adding an axial reaction wheel on the desired
spin axis. Aleksandrov et al. (2018) studied an electrody-
namic attitude control system for a symmetric satellite on
a circular orbit. Gorr (2021) proposed a new method for
integrating the equations of motion reducing the original
equation to a fifth-order system.

In the current paper, a gyrostat satellite with a particular
configuration is studied. As mentioned above, a previous
study Santos and Melicio, 2020, detected small equilibria
regions when the gyrostatic moment of inertia is tangent
to the orbital plane. The existence of these regions needs
confirmation, as well as subsequent analysis of both the
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equilibria and stability of this case. In summation, the main
contributions are: (i) development of an analytical method,
which was numerically tested by software, to determine all
the equilibrium and stability conditions for the configura-
tion where the Satellite Vector of Gyrostatic Moment is
Tangent to the Orbital Plane; (ii) the study of the equilibria
evolution near when the angular momentum is aligned with
the orbital tangent direction; (iii) analytically determina-
tion of the equilibrium bifurcation curves; (iv) analytically
determination of the asymptotic stability evolution curves.

The paper is structured as follows: Section 2 explains the
prototype design. Section 3 presents the prototype imple-
mentation. Section 4 focus on the experimental methods
and results. Finally, Section 5 outlines conclusions.

2. Motion Equations

This section describes the equations of motion that rule
a solid body with statically and dynamically balanced inter-
nal rotors. The rotor’s angular velocity is assumed constant
relative to the satellite’s main body, while the satellite’s cen-
tre of mass moves along a circular orbit in a central New-
tonian gravitational field. Two right-handed Cartesian
reference frames with origin at the satellite’s centre of mass
O are introduced. The first is the OX 1X 2X 3 which repre-
sents the orbital reference frame whose axis OX 3 is directed
along the radius vector connecting the satellite’s centre of
mass and Earth’s, the OX 1 axis is aligned with the linear
velocity of the centre of mass O and the OX 2 is normal
to the plane of orbit. The second cartesian reference is
the Ox1x2x3 which represents the satellite-fixed reference
frame, where Oxi i ¼ 1; 2; 3ð Þ are the satellite’s principal
axes of inertia.

Let us define the orientation of the satellite-fixed refer-
ence frame relative to the orbital reference frame by the
spacecraft angles a; b, and c represented in Fig. 1, Where
these Euler angles are a sequence of rotations of Ox1x2x3
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around the orbital reference system OX 1X 2X 3. Regarding
this case study the chosen rotation sequence was the 2–3-
1 (Kane and Ben-Asher, 1983) with a being the angle
between OX 1X 3 (rotation of OX 2 axis), b being the angle
between OX 1X 2 (rotation of OX 3 axis) and c being the
angle between OX 2X 3 (rotation of OX 1 axis). Conse-

quently, the direction cosines aij ¼ cos X i; xj
� �

are specified

by the following expressions (Sarychev et al., 2008):

a11 ¼ cos a cos b

a12 ¼ sin a sin c� cos a sin b sin c

a13 ¼ sin a cos cþ cos a sin b sin c

a21 ¼ sin b

a22 ¼ cos b cos c

a23 ¼ � cos b sin c

a31 ¼ � sin a cos b

a32 ¼ cos a sin cþ sin a sin b cos c

a33 ¼ cos a cos c� sin a sin b sin c

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

The equations governing the satellite attitude dynamics are
written in the form (Saryshev and Mirer, 2001; Sarychev
et al., 2008; Gutnik and Sarychev, 2017; Sarychev et al.,
2013; Gutnik and Sarychev, 2013; Gutnik and Sarychev,
2014; Gutnik et al., 2015; Santos, 2015; Sarychev et al.,
2012):

A _p þ C � Bð Þqr � 3x2
0 C � Bð Þa32 a33 � h2 r þ h3 q ¼ 0

B _qþ A� Cð Þ rp � 3x2
0 A� Cð Þa33 a31 � h3 p þ h1 r ¼ 0

C _r þ B� Að Þpq� 3x2
0 B� Að Þa31 a32 � h1 qþ h2 p ¼ 0

8><
>:

ð2Þ
p ¼ _aþ x0ð Þa21 þ _c ¼ p þ x0 a21
q ¼ _aþ x0ð Þa22 þ _b sin c ¼ qþ x0 a22
r ¼ _aþ x0ð Þa23 þ _b cos c ¼ r þ x0 a23

8><
>:

ð3Þ

Here, A;B;C are the gyrostat’s principal central moments
of inertia; p; q; r are the gyrostat’s absolute angular velocity
projections and hi i ¼ 1; 2; 3ð Þ the gyrostatic angular
moment vector projections onto axes Oxi. Lastly, x0 is
the orbital angular velocity of the gyrostat centre of mass,
while the dots designate time differentiation.
3. Gyrostat’s Equilibrium

Following (Sarychev et al., 2008), first, the designation

hi=x0 ¼ hi is introduced and the ensuing system of equa-
tions are obtained:

4 Aa21 a31 þ Ba22 a23 þ Ca23 a33ð Þ
þh1 a31 þ h2 a32 þ h3 a33 ¼ 0

Aa11 a31 þ Ba12 a32 þ Ca13 a33 ¼ 0

Aa11 a21 þ Ba12 a22 þ h1 a11 þ h2 a12 þ h3 a13 ¼ 0

8>>><
>>>:

ð4Þ

This system allows the establishment of all gyrostat’s equi-
librium positions in the orbital reference frame. In this
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case, aij, as elements of an orthogonal matrix, satisfy the
following conditions:

a211 þ a212 þ a213 ¼ 1

a221 þ a222 þ a223 ¼ 1

a231 þ a232 þ a233 ¼ 1

a11 a21 þ a11 a21 þ a11 a21 ¼ 0

a11 a31 þ a12 a32 þ a13 a33 ¼ 0

a21 a31 þ a22 a32 þ a23 a33 ¼ 0

8>>>>>>>><
>>>>>>>>:

ð5Þ

At A – B – C one can solve system (5) and (6) for
a11; a12; a13; a21; a22; a23 and a23.

a11 ¼ 4 C � Bð Þa32 a33=F
a12 ¼ 4 A� Cð Þa33 a31=F
a13 ¼ 4 B� Að Þa31 a33=F
a21 ¼ 4 I3 � Að Þa31=F
a22 ¼ 4 I3 � Bð Þa32=F
a23 ¼ 4 I3 � Cð Þa33=F

8>>>>>>>><
>>>>>>>>:

ð6Þ

Here, F ¼ h1 a31 þ h2 a32 þ h3 a33; I3 ¼ Aa231 þ Ba232 þ Ca233,
and direction cosines a31; a32 and a33 are determined from
the following:

16 B� Cð Þ2 a232 a233 þ C � Að Þ2 a233 a231þ
h

þ A� Bð Þ2 a231 a232
i
¼ h1 a31 þ h2 a32 þ h3 a33ð Þ2

4 B� Cð Þ C � Að Þ A� Bð Þa31 a32 a33þ
h1 B� Cð Þa32 a33 þ h2 C � Að Þa33 a31þ½
þh3 A� Bð Þa31 a32� h1 a31 þ h2 a32 þ h3 a33ð Þ ¼ 0

a231 þ a232 þ a233 ¼ 1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

Solving system (7) will allow the computation of the direc-
tion cosine in (6). Note that solutions (6) only exist when,
out of three direction cosines a31; a32 and a33, none two van-
ish simultaneously. The cases a31 ¼ a32 ¼ 0; a32 ¼ a33 ¼ 0
and a33 ¼ a31 ¼ 0 are special and should be considered
immediately by addressing systems (4) and (5). The case
a32 ¼ a33 ¼ 0 will be discussed later.

In previous studies, the general case of the gyrostat
(h1 – 0; h2 – 0 and h3 – 0) (Santos, 2015), as well as other
particular cases, such as the case when the gyrostatic
moment vector is collinear with one of the satellite’s prin-
cipal central axes of inertia (h1 ¼ 0; h2 – 0 and h3 ¼ 0)
(Saryshev and Mirer, 2001), and the case when the gyro-
static moment vector is parallel to the satellite’s principal
central plains of inertia (h1 ¼ 0; h2 ¼ 0 and h3 – 0)
(Sarychev et al., 2008) were analysed. In the present study,
we deepen the knowledge on the case when the gyrostatic
moment vector is along the satellite’s local tangent with roll
angle c ¼ 0, in which the parameter h1 is zero
(h1 ¼ 0; h2 – 0 and h3 – 0) which is not addressed within
the current framework, particularly by Saryshev and
Mirer (2001), Sarychev et al. (2008). The main objective
of studying the case where h1 ¼ 0 is to assess the configura-
tions of such gyrostat satellites, as well as verifying the



R.H. Morais et al. Advances in Space Research 69 (2022) 3921–3940
existence of small equilibrium regions out of their main
region addressed in the General Case Bifurcation of
Equilibria (Santos and Melicio, 2020).

Making H 1 ¼ 0 and H 2 ¼ h2
C�A ;H 3 ¼ h3

C�A ; v ¼ A�B
C�A , the

system of 7 takes the form:

16 a232 a
2
33 vþ 1ð Þ2 þ a231 a

2
33 þ a232 a

2
33 v

2
h i

¼
¼ H 2 a32 þ H 3 a33ð Þ2

a31 �4v 1þ vð Þa32 a33 þ H 2 a33þ½f
þH 3 a32 v� H 2 a32 þ H 3 a33ð Þg ¼ 0

a231 þ a232 þ a233 ¼ 1

8>>>>>>><
>>>>>>>:

ð8Þ

When investigating system (8) is clear that three different
cases can exist. The first is a31 – 0 and a32 ¼ a33 ¼ 0, which
solutions will be referred as Group I; the second case is
when a31 – 0; a32 – 0 and a33 – 0, which solutions will be
referred as Group II; and finally when a31 ¼ 0; a32 – 0
and a33 – 0, which solutions will be referred as Group III.

For the case where a31 – 0 and a32 ¼ a33 ¼ 0, it is
required to manipulate Eq. (8) to be dependent of a32
and a33 for assessing the solvability of (8):

16 a232 a
2
33 þ vþ 1ð Þ2 þ a231 a

2
33 þ a232 a

2
33 v

2
h i

¼
¼ H 2 a32 þ H 3 a33ð Þ2

�4v 1þ vð Þa32 a33 þ H 2 a33þ½
þH 3 a32 v� H 2 a32 þ H 3 a33ð Þ ¼ 0

a231 þ a232 þ a233 ¼ 1

8>>>>>>><
>>>>>>>:

ð9Þ

From the (9) it follows that, if a32 ¼ 0, then a33 ¼ 0. Eq. (9)
gives no useful information since we fall into consistent
dependent situation. To resolve this, the original Eqs. (4)
and (5) need to be addressed, and develop this special case
from there instead of (8). After manipulating (4) and (5),
the following is achieved:

� vþ 1ð Þ2x41 þ 2H 2 vþ 1ð Þx31 þ vþ 1ð Þ2
h

�H 2
3 � H 2

2

�
x21 � 2H 2 vþ 1ð Þx1 þ H 2

2 ¼ 0
ð10Þ

where x1 ¼ a22.

H 2=3
2 þ H 2=3

3 ¼ vþ 1ð Þ2=3 ð11Þ

In (10) has four roots at H 2=3
2 þ H 2=3

3 < vþ 1ð Þ2=3 and two

roots at H 2=3
2 þ H 2=3

3 > vþ 1ð Þ2=3. Therefore, the total num-
ber of equilibrium positions for the case where a32 ¼ 0 and
a33 ¼ 0, i.e., the number of solutions of Group I, can be
either 8 or 4, depending on the relation between dimension-
less parameters H 2 and H 3.

For the case where a31 – 0; a32 – 0 and a33 – 0, is neces-
sary to address (9) at a32 – 0 and a33 – 0. After manipula-
tion can be verified that:

H 2H 3 vx22 þ H 2
2 þ H 2

3 v� 4v vþ 1ð Þ� �
x2 þ H 2H 3 ¼ 0 ð12Þ
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a231 ¼
H3þH2 x2ð Þ2 x2

2
þ1ð Þ�16 x2

2
vþ1ð Þ2

16 v x2
2
�1ð Þ2

a233 ¼
16 v2 x2

2
þ1ð Þ� H3þH2 x2ð Þ2

16 v x2
2
�1ð Þ2

8>><
>>:

ð13Þ

where:

x2 ¼ � H2
2
þH2

3
v�4v vþ1ð Þð Þ� ffiffiffi

D
p

2H3 H2 v
and

D ¼ H 3 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
vþ 1

p� �2
v� H 2

2

h i
H 3 � 2

ffiffiffiffiffiffiffiffiffiffiffi
vþ 1

p� �2
v� H 2

2

h i

ð14Þ
The system (9) solution, together with (13), (14), and (5),
corresponds to solutions of Group II and does not exceed
8.

For the case where a31 ¼ 0; a32 – 0 and a33 – 0, (4) and
(5) result in:

4 Ba22 a32 þ Ca23 a33ð Þ þ h2 a32 þ h3 a33 ¼ 0

0 ¼ 0

0 ¼ 0

8><
>:

ð15Þ

a21 ¼ 0

0 ¼ 0

a22 a32 þ a23 a33 ¼ 0

8><
>:

ð16Þ

Utilizing (15) and (16), a 4th order equation in function of
x3 ¼ a22 can be obtained:

�16 vþ 1ð Þ2 x43 þ 8H 2 vþ 1ð Þx33 þ �H 2
2 � H 2

3þ
�

þ16 vþ 1ð Þ2
�
x23 � 8H 2 vþ 1ð Þx3 þ H 2

2 ¼ 0
ð17Þ

Like (10), (17) can have either 4 or 2 real roots. Changes in
the number of roots on the surface are determined, using
the same method as in the Case I, by:

H 2=3
2 þ H 2=3

3 ¼ 4 vþ 1ð Þ½ �2=3 ð18Þ
Four roots exist at H 2=3

2 þ H 2=3
3 < 4 vþ 1ð Þ½ �2=3 and two

roots at H 2=3
2 þ H 2=3

3 > 4 vþ 1ð Þ½ �2=3. Thus, the number of
solutions of group III can be either 4 or 8.

Analyzing Fig. 2, the curves (11) and (18) divide the
plane (H 3;H 2) in three sub-regions. If

H 2=3
2 þ H 2=3

3 < 4 vþ 1ð Þ½ �2=3, 16 solutions exist (i.e. equilib-
rium positions), 8 solutions for each solutions group I

and III; if vþ 1ð Þ2=3 < H 2=3
2 þ H 2=3

3 < 4 vþ 1ð Þ½ �2=3, there
are 12 solutions, 8 from solutions group III and 4 from

group I; and if H 2=3
2 þ H 2=3

3 > 4 vþ 1ð Þ½ �2=3, there are 8 solu-
tions, 4 from each group of solutions I and III. This result
is like the ones found by Sarychev et al. (2008).

As mentioned by Sarychev et al. (2005), (13) and (14)
need a closer look since they can be valid either for both
signs before the square root or for only one sign, which
results in the existence of equilibrium positions correspond-
ing to both roots of (12) or only one root (x2;1 or x2;2). The
analysis of the regions of validity of Eqs. (13) and (14) for
each root of (12) at v ¼ 1:5, considering that v > 0, are pre-
sented in Fig. 3 and 4. The dashed lines correspond to



Fig. 2. Bifurcation curves for solutions group I and III for v ¼ 1:5.

Fig. 3. Regions of validity of the conditions a231 P 0 and a233 P 0 for the positive root of (13) and (14). at v ¼ 1:5.
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values where the discriminant (D) (14) is equal to zero,
which is reflected in more detail in Fig. 5.

For each case presented in Fig. 3 and 4, the full lines rep-
resent where expressions (13) and (14) are equal to zero.
The areas delimited by full lines are regions where the con-
ditions (13) and (14) are valid for each root of (12). In each
of these regions, there are four solutions of Group II;
beyond their boundaries, there are no solutions, since one
or both conditions (13) and (14) are invalid. Combining
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the results of Fig. 3 and 4, the study of equilibria bifurca-
tion of Group II is achieved in Fig. 6. The complete equi-
libria bifurcation study of the gyrostat at v ¼ 1:5,
combining the study of bifurcation of solutions of Group
I, II and III, is presented in Fig. 7. Notice that the plane
(H 3;H 2) is portioned into sub-regions. In each sub-
region, there are a certain fixed number of equilibrium
positions, and the curves are symmetric about the origin
of the coordinated axes, as mentioned by Santos (2015).



Fig. 4. Regions of validity of the conditions a231 P 0 and a233 P 0 for the negative root of (13) and (14). at v ¼ 1:5.

Fig. 5. The regions of validity (gray) of conditions (13) and (14), where D P 0, .for v ¼ 1:5.
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To help visualise the different conditions of each group I, II
and III, presented in Fig. 7, a colour notation is used in
Table 1.

One can see from Fig. 7 that there are no more than 24
equilibrium positions and no less than 8 equilibrium posi-
tions, the same conclusions were obtained by Saryshev
and Mirer (2001), Sarychev et al. (2008), Santos (2015)
for other configurations of the gyrostatic moment vector.
It is important to mention the two regions of 12 equilib-
rium positions: (a) and (b). These regions are completely
3927
new to the study of this type of gyrostats, they head
towards infinity by an oblique asymptote inside a region
of eight equilibrium positions. The regions’ boundaries dis-
tance decreases as they approach infinity and seem to share
a relation of parallelism between them.

The evolution of the gyrostat’s equilibrium positions
along the plane (H 3;H 2), described by the space- craft
angles a; b and c at a specific v, is relevant to show the rela-
tion between the gyrostat’s equilibria bifurcation curves,
shown in Fig. 7, and the behaviour of the spacecraft angles



Fig. 6. Bifurcation curves for solutions of Group II at v ¼ 1:5.

Fig. 7. Gyrostat’s equilibria bifurcation at v ¼ 1:5.

Table 1
Colour notation of Fig. 7

Curve (Eq. 11) Curve a231 (Eq. 13) Curve a233 (Eq. 14) Curve (Eq. 18)

Blue Orange Yellow Green
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from these equilibrium solutions. When analysing the coef-
ficients from Eq. (11, 13, 14, 18), the coefficients with odd x

degree p2k depend only on odd degree parameters H 2 and
H 3. For the coefcients with even x degree p2kþ1 we can
3928
transfer them using a factorized function in a form of
p2kþ1 ¼ H 2H 3 a2kþ1, where factor a2kþ1 depends only on
odd degree parameters H 2 and H 3. So, when the sign from
H 2 or H 3 is changed, it only changes the sign of real root of
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the polynomial (11, 13, 14, 18) while the number of real
roots remains unchanged. As so, changing the sign of the
real roots has no impact on the number of equilibria
regions, and because so, all figures are perfectly symmetri-
cal in both H 2 and H 3 axis. In Fig. 8, the plane’s (H 3;H 2)
1st quadrant is shown along with a straight line R
(H 3;H 2), at fixed v ¼ 1:5, for comparison with Sarychev
et al. (2008) and because it goes through each type of
region (24, 20, 16, 12 and 8).

Each equilibrium position of groups I and III are deter-
mined by choosing one of the roots of (10) and (17), select-
ing the sign of direction cosine a31 (a11) and using the
expressions from groups I and III solutions. The roots
can have either 4 or 2 real roots depending on whether
the ordered pair (H 3;H 2) is before or after the curve (11)
and (18). The equilibrium positions for group II are calcu-
lated in a more complex way: (a) choose one of the roots of
(12); (b) check the validity of conditions: a231 P 0 and

a233 P 0; (c) select the signs of direction cosines a31 and
a33; and in last, (d) use group II expressions to calculate
the other direction cosines. The spacecraft angles a; b and
c are determined using expressions (1).

Following this logic, in Fig. 9, a chart describing the
evolution of the spacecraft angles is built corresponding
to R (H 3;H 2), and the equilibrium positions index were
introduced (see Table 1). The notation used for the equilib-
rium indexes is adapted from Sarychev et al. (2008), for the
sake of comparison. The lines have three different colours:
blue, orange, and yellow; and three chart markers: circle,
square, and triangle, corresponding to the solutions of
group I, II, and III, respectively. The horizontal dashed
lines represent: H 2 ¼ p=4;H 2 ¼ p=2;H 2 ¼ p;H 2 ¼ 3p=2,
and H 2 ¼ 2p, when relevant in the chart.
Fig. 8. Gyrostat’s equilibria bifurcation at v ¼ 1:5 an

3929
From the analysis of Fig. 9, there are four values
(R1 ¼ 0:88;R2 ¼ 0:94;R3 ¼ 1:24 and R4 ¼ 3:53) at which
the fixed number of equilibrium positions changes. For
H 3 2 0; 0:88½ �, there are 24 solutions represented by the
indexes (1. (1–8); 2. (1–8) and 3. (1–8)), see Fig. 9 for angle
a; at the intersection of straight line R1 ¼ 0:88 and curve
(11), four solutions of group I (1. (5–8)) disappear when
the angle c corresponding to these solutions is p=4.

For H 3 2 0:88; 0:94½ �, there are 20 solutions (1. (1–4); 2.
(1–8) and 3. (1–8)); at the intersection between straight line
R2 ¼ 0:94 and curve a31 (13), four solutions of group II dis-
appear when the angle b corresponding to these solutions
are 0 (2. (6,7)) or 2p (2. (5,8)).

For H 3 2 0:94; 1:24½ �, there are 16 solutions (1. (1–4); 2.
(1–4) and 3. (1–8)); at the intersection between R3 ¼ 1:24
and curve a31 (13), the last four solutions of group II disap-
pear when the angle b corresponding to these solutions is 0
(2. (1,4)) or 2p (2. (2,3)).

For H 3 2 1:24; 3:53½ �, there are 12 solutions (1. (1–4) and
3. (1–8)); at the intersection between R4 = 3.53 and curve
(18), four solutions of group III (3. (5–8)) disappear when
the angle c corresponding to these solutions is p=4. At
R > 3:53 until the end of the window of Fig. 8, there are
only 8 solutions (1. (1–4) and 3. (1–4)), the values of angles
a and b remain constant and the angle c tends to a constant
value as R increases, for each solution.

Fig. 10 shows the bifurcation of equilibria for v ¼ 0:7.
The results show that for every inertial configuration stud-
ied, there are no less than 8 equilibrium positions and no
more than 24. In a general way, in regions with small val-
ues of H 3 and H 2, there are 24 equilibrium positions. With
the increase of H 3 and/or H 2, the 24 equilibrium positions
region gives place to 20 equilibrium positions region, then
d straight line R (H 3;H 2) with bifurcation values.



Fig. 9. Equilibrium positions of a gyrostat at v ¼ 1:5 and for R H 2 ¼ H 3ð Þ described by angles a;b and c.
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to 16 equilibrium positions region, then to 12 equilibrium
positions region and finally, to 8 equilibrium positions
region. There can be also found some peculiarities in this
study: two small regions of 12 equilibrium positions, which
tend to infinity, and two regions of 16 equilibrium positions
inside one of 12 equilibria positions that exist outside the
main regions. The upper region of 16 equilibrium positions
3930
and 12 equilibria positions approaches an oblique asymp-
tote, which slope is low for lower values of v v ¼ 0:1ð Þ,
but increases as v increases. The regions’ boundaries dis-
tance also increases with the value of v. On the other hand,
the lower region of 16 equilibria positions and 12 equilibria
positions also approaches an oblique asymptote, almost in
a parallel way with the previous case, which slope is low for



Fig 9. (continued)

Fig. 10. Gyrostat’s equilibria bifurcation at v ¼ 0:7.
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lower values of v and high for higher values of v. However,
the regions’ boundaries distance differs from the previous
case, as it diminishes with higher values of v. A different
case happens with a small region of 16 equilibria positions
inside one of 20 equilibria positions, like the ones found by
3931
Sarychev et al. (2008), derived from a231 expression, which
exist near H 3 ¼ 0 and H 2 ¼ 0:5 for v < 0:3 and near
H 3 ¼ 4 and H 2 ¼ 0 for v P 4. These regions increase in size
with lower values of v v < 0:3ð Þ and higher values of
v v P 4ð Þ.
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4. Gyrostat’s Stability of Equilibria

In this section, Lyapunov’s stability theory is reviewed
and the sufficient stability conditions for the equilibrium
positions of a gyrostat satellite are obtained. As in previous
studies (Sarychev et al., 2008; Santos, 2015), the general-
ized energy integral is continuous, and it can therefore be
used as Lyapunov’s function:

1
2
Ap2 þ Bq2 þ Cr2
� �þ
þ 1

2
x2

0 3 A� Cð Þa231 þ B� Cð Þa232
� �þ�

þ B� Að Þa221 þ B� Cð Þa223
� �

�2 C � Að Þ H 2a22 þ H 3a23ð Þ� ¼ H

ð19Þ
Now, small variations will be introduced in the direction
angles. These variations can be interpreted as orbital dis-
turbances since the main purpose is to check how the sys-
tem will respond to disturbances near a; b and c. Thus,
let us represent a; b and c in the form:

a ¼ a0 þ a

b ¼ b0 þ b

c ¼ c0 þ c

8><
>:

ð20Þ
Where a; b and c are small deviations from the satellite’s
equilibrium position: a ¼ a0 ¼ const; b ¼ b0 ¼ const and
c ¼ c0 ¼ const. Then, the energy integral can be written
in the following form:

1
2
Ap2 þ Bq2 þ Cr2
� �þ
þ 1

2
x2

0 Aaa a2 þ Abb b2 þ Acc c2þ
�

þ2Aab abþ 2Abc bcþ 2Aac ac
�þP ¼ const

ð21Þ
Where R designates the terms of higher than second order

of smallness with respect to a; b; c. Expanding the direction
cosines according to a Taylor series (Santos and Melicio,
2020):

aij a; b; cð Þ ¼ aij a0 þ a; b0 þ b; c0 þ c
� � ¼

¼ aij a0; b0; c0ð Þ þ @aij
@a aþ @aij

@b bþ @aij
@c c

� �
þ

þ 1
2

@2aij
@a2 a

2 þ @2aij
@b2

b2 þ @2aij
@c2 c

2þ
�

þ2
@2aij
@a@b abþ 2

@2aij
@a@c acþ 2

@2aij
@b@c bc

�
ð22Þ
To study the stability of small displacements, the expanded
Taylor series above must be applied to the system of direc-
tion cosines (1). Afterwards, when applied the small dis-
placements described in (20), the system (1) is
transformed into:
3932
a11 ¼ cos a0 cos b0

a12 ¼ cos a0 sin c0 � cos a0 sin b0 sin c0
a13 ¼ cos a0 cos c0 þ cos a0 sin b0 sin c0
a21 ¼ sin b0

a22 ¼ cos b0 cos c0
a23 ¼ � cos b0 sin c0
a31 ¼ � sin a0 cos b0

a32 ¼ cos a0 sin c0 þ sin a0 sin b0 cos c0
a33 ¼ cos a0 cos c0 � sin a0 sin b0 sin c0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð23Þ

After applying the Taylor series described in (22) to the sys-
tem of direction cosines only for the relevant direction cosi-
nes a21; a22; a23; a31, and a32, the following expressions are
obtained:

Aaa ¼ 3 A� Cð Þ a112 � a312ð Þ þ B� Cð Þ a122 � a322ð Þ½ �
Abb ¼ B� Cð Þ 3 a222 sin

2 a0 � a32 a21 cos c0 sin a0
� �þ�

þa212 sin
2 c0 � a232

�þ B� Að Þ cos2 b0 � a212ð Þþ
þ A� Cð Þ 3 a212 sin

2 a0 � a312
� �� H 2 a22 � H 3 a23

� �
Acc ¼ B� Cð Þ a222 � a232ð Þ � 3 a322 � a332ð Þ½ �

� A� Cð Þ H 2 a22 þ H 3 a23ð Þ
Aab ¼ 3 A� Cð Þ a21 a31 cos a0 � a11 a21 sin a0ð Þþ

þ3 B� Cð Þ a11 a32 cos c0 � a12 a22 sin a0ð Þ
Abc B� Cð Þ a21 a23 cos c0 � a22 sin c0ð Þþ½

þ3 sin a0 a22 a33 þ a23 a32ð Þ�þ
þ A� Cð Þa21 H 2 sin c0 þ H 3 cos c0ð Þ

Aac ¼ �3 B� Cð Þ a12 a33 þ a13 a32ð Þ

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ

Sarychev et al. (2008), Santos (2015) is stated that from the
Lyapunov’s theorem, the equilibrium solution
a ¼ a0; b ¼ b0 and c ¼ c0 is asymptotically stable if the
quadratic form:

Aaa a2 þ Abb b2 þ Acc c2þ
þ2Aab abþ 2Abc bcþ 2Aac ac

ð25Þ

is positive definite, i.e., at:

Aaa > 0

AaaAbb � Aab > 0

AaaAbbAcc þ 2AabAbcAac

�AaaA
2
bc � AbbA

2
ac � AccA

2
ab > 0

8>>><
>>>:

ð26Þ

Now it is necessary to test the solutions obtained in Chap-
ter 3, i.e., test the equilibria solutions into the Lyapunov’s
stability theory’s scheme presented in (26).

For Group I solutions the following is presented:

Aaa > 0 () 1� vþ 1ð Þ H 2
3 x

2
1

H 2 � x1 vþ 1ð Þð Þ2 > 0 ð27Þ



Fig. 11. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 0:1 and H 3 ¼ 2 (b).
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AaaAbb � A2
ab > 0 ()

() 3 1� vþ 1ð Þ H2
3
x2
1

H2�x1 vþ1ð Þð Þ2
h i

�

� vþ 1ð Þ 3x21 sin
2 a0 � H2

3
x2
1

H2�x1 vþ1ð Þð Þ2
h in

�v cos2 b0 þ 3þ H 2x1 þ H2
3
x1

H2�x1 vþ1ð Þ

o

�9 vþ 1ð Þ2 H2
3
x4
1

H2�x1 vþ1ð Þð Þ2 sin a0 > 0

ð28Þ
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The stability study of the group II solutions leads to a more
complex problem. In this case, the relations ((12)–(14))
should be used to determine a31; a32, and a33, and the group
II solutions for the rest of the direction cosines matrix ele-
ments. Then, the angles a0; b0 and c0 are determined explic-
itly and the coefficients of the quadratic form (24) are
calculated, as well as the conditions of its positive definite-
ness. Using this direct approach, this problem was impos-
sible to solve, and the usage of a different method to



Fig. 12. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 0:5 and H 3 ¼ 2 (b).
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analytically achieve the group II stability of equilibria
equations is recommended. Nevertheless, the solutions
were computed using mathematical software and results
were added to the graphical analysis.
3934
For Group III solutions, the following is presented:
Aaa > 0 () 1� vþ 1ð Þ H 2
3 x

2
3

H 2 � 4 vþ 1ð Þx3ð Þ2 > 0 ð29Þ



Fig. 13. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 1:0 and H 3 ¼ 0:1 (b).
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AaaAbb � A2
ab > 0 ()

() 3 �1þ vþ 1ð Þ H2
3
x2
3

H2�4 vþ1ð Þx3ð Þ2
h i

�

vþ 1ð Þ H2
3
x2
3

H2�4 vþ1ð Þx3ð Þ2 � v cos2 b0þ
n

þH 2x3 þ H2
3
x3

H2�4 vþ1ð Þx3

o

�9 vþ 1ð Þ2 H2
3
x2
3

H2�4 vþ1ð Þx3ð Þ2 cos c0 > 0

ð30Þ
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The graphical results from the stability analysis are shown
in Fig. 11–16 as a function of spacecraft angle c and H 2.
The coloured dashed lines correspond to when a specific
equilibrium position is unstable, and the coloured full lines
correspond to when a specific equilibrium position is stable
(sufficient conditions of stability (24) are valid). The col-
ours blue, orange, and dark yellow represent equilibrium
solutions of group I, II, and III, respectively. The black
vertical dashed lines (Ri) in the stability chart correspond



Fig. 14. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 1:5 and H 3 ¼ 0:1 (b).
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to intersection points (i = 1, 2,. . .) between the green line
and equilibria regions, in the equilibria chart. Finally, the
black horizontal dashed line corresponds to notable points
(p/2 and p) in the axis c rad½ �.
3936
The results obtained for all cases, in the first place,
show that the angle c can vary between 0 and p; sec-
ond, there is a minimum of two stable equilibrium solu-
tions and a maximum of six stable equilibrium positions



Fig. 15. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 5 and H 3 ¼ 5 (b).
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for each analysed case. For each group of two consec-
utive equilibrium positions from group I and III, the
angle c value is the same. This means that each equilib-
rium curve in each chart represents two equilibrium
positions.
3937
In the case of group II, it has also been proven that the
eight equilibrium positions can be reduced to two equilib-
rium curves in each chart. Analysing the stability of these
solutions, for the same value of angle c, a group of four
solutions can have two stable solutions and two unstable



Fig. 16. Stability as a function of angle c and H 2 (a) and respective equilibria chart for v ¼ 10 and H 3 ¼ 0:1 (b).
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solutions simultaneously. An example can be seen in
Fig. 15 between R4 and R5, where a full line matches a
dashed line. This discovery is entirely new in the gyrostat
satellite stability study and should be further analysed in
future work.

For lower values of v (v ¼ 0:1 and v ¼ 0:5), the regions
defined by the upper oblique asymptote became very nar-
row, which also makes the equilibrium curves very narrow
or even disappear, Fig. 11 and 12. For higher values of v
3938
(v ¼ 5 and v ¼ 10), similarly, the regions defined by the
lower oblique asymptote became very narrow, which
makes the equilibrium curves have small intervals or van-
ish, Fig. 15 and 16. For high values of H 3 (H 3 – 10), both
regions mentioned before became very narrow, which has
the same consequence as previous cases.

The increase of parameter H 2, in the case of group I and
III, makes the equilibrium curves converge to a certain
angle c. In the case of group II, the parameter increase
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can make the equilibrium curves vanish, this happens at
intersection points (Ri) that result from the bisection of
the vertical line H 3 ¼ const with the regions’ borders with
a fixed number of equilibria.

Finally, analysing the case when v varies and H 3 is con-
stant (e.g., H 3 ¼ 0:1, Fig. 13, 14, and 16), the stable lines’
size of groups I and III solutions decrease, on the other
hand, the stable lines’ size of group II solutions increases.
Another case is when v is constant (e.g., v ¼ 1:5, Fig. 14)
and H 3 varies, the stable lines’ size of groups I and III solu-
tions increase, on the other hand, the two stable lines of
group II solutions became one from H 3 ¼ 0:1 to H 3 ¼ 2,
and vanish at H 3 ¼ 10. It is also important to mention that
Saryshev and Mirer (2001), Sarychev et al. (2008) have
made a similar study, but addressing the case where
H 2 ¼ 0, aligned with one of the principal planes of inertia.
The objective in making H 1 ¼ 0 is to address a different
case not addressed by Saryshev and Mirer (2001),
Sarychev et al. (2008), as well as to study the stability of
small equilibrium regions addressed by Santos and
Melicio (2020) which might lead to interesting academic
results regarding the study and analysis of the general case
(Santos and Melicio, 2020).

5. Conclusions

The objective of this work was the study of small equi-
librium regions out of their main region when the vector
of gyrostatic moment is tangent to the orbital plane. This
objective is aligned to verify the results discovered in the
general case presented by Santos (2015), which were con-
firmed and validated from the analysis of Figs. 7–9.

A mathematical analytical–numerical method was used
to determine all equilibrium positions, the conditions of
their existence and the sufficient conditions of stability.
Three groups of equilibrium solutions were found: groups
I, II, and III, each one describing up to eight equilibrium
positions, totalising 24 maximum equilibrium positions.
The direction cosines expressions are presented in the expli-
cit form as a function of system dimensionless parameters
v;H 2 and H 3. The bifurcation curves of group I and III
solutions were determined analytically, and the equilibrium
existence conditions of group II solutions were obtained as
a function of parameters v;H 2 and H 3. A detailed evolution
study of the gyrostat satellite equilibria bifurcation and an
evolution study of the sufficient stability conditions validity
for each equilibrium were conducted by a numerical-
analytical method as a function of the system parameters
v;H 2 and H 3. It was shown that there is no less than 8
and no more than 24 equilibrium positions for every stud-
ied case, more specifically, no less than 4 and more than 8
equilibrium positions for each group of solutions I, II, and
III. The existence of small equilibria regions close to
H 1 ¼ 0 was confirmed.

Regarding the gyrostat stability, there is a minimum of
two stable equilibrium positions for each studied case
and a maximum of six stable equilibrium positions.
3939
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