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1  | INTRODUC TION

Quantifying species composition and richness is a fundamental step 
for assessing the status of local and regional biodiversity (Matias 
et  al.,  2017). However, required data for such quantifications are 
often unavailable at the relevant temporal, spatial and taxonomic res-
olutions (Altermatt et al., 2020). Complexities associated with vary-
ing detection probabilities and (mis)identifications further plague 
assessments, particularly when addressing finer levels of taxonomic 

resolution (McGill et al., 2015). Morphological identification to the 
level of species or genus can be difficult (Hajibabaei et  al.,  2011), 
especially for invertebrates requiring adult stage observations for 
correct identification to species level. This process generally neces-
sitates specialized taxonomic expertise, which is scarce and time-
consuming. For these reasons, biodiversity assessments often recur 
to classifications at coarse taxonomic levels (Elbrecht et al., 2017). 
Spatial differences in β-diversity can be detected using taxonomic 
classifications at genera or family level (Terlizzi et  al.,  2009), but 
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Abstract
1.	 Accurate quantification of biodiversity can be demanding and expensive. 

Although environmental DNA (eDNA) metabarcoding can facilitate biodiversity 
assessments through non-invasive, cost-efficient and rapid surveys, the approach 
struggles to outperform traditional morphological approaches in providing reli-
able quantitative estimates for surveyed species (e.g. abundance and biomass).

2.	 We present an integrated methodology for improving biodiversity surveys that 
pairs eDNA metabarcoding with morphological data, following a series of taxo-
nomic and geographical filters. We demonstrate its power by applying it to a new 
spatiotemporal dataset generated on an Iberian-wide distributed aquatic meso-
cosm infrastructure that spans a wide biogeographical gradient.

3.	 By building upon the strengths that these two approaches offer, our framework 
improved taxonomic resolution for 30% of the taxa and enabled species’ traits (e.g. 
body size) and abundance to be assigned to 85% of the taxa in hybrid datasets.

4.	 These results indicate that eDNA-based assessments can complement, but not 
always replace, conventional approaches. Integrating conventional and modern 
eDNA metabarcoding approaches, already available in the ecologist's toolbox, will 
greatly enhance biodiversity assessments.
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species within higher taxonomic groups may exhibit responses to 
stressors (Macher et al., 2016) that go unnoticed in studies with low 
taxonomic resolution.

Recently, molecular approaches based on environmental DNA 
(eDNA) metabarcoding have made it possible to generate large 
amounts of data with non-invasive, cost-efficient, rapid surveys (Deiner 
et  al.,  2017; Taberlet et  al.,  2012, 2018). In addition, metabarcoding 
could boost biodiversity data acquisition to unprecedented levels by 
making such efforts less reliant on increasingly scarce taxonomic ex-
pertise (Elbrecht et al., 2017; Taberlet et al., 2012). Nevertheless, eDNA 
metabarcoding is not without drawbacks. Among shortcomings are the 
sensitivity of results to differences in the DNA extraction method and 
marker choices, its dependency on often-incomplete reference data-
bases, and the difficulties in providing quantitative estimates of abun-
dance or biomass for the surveyed species (Deiner et al., 2017; Ruppert 
et al., 2019). Several studies have emphasized that biodiversity assess-
ments conducted with eDNA metabarcoding may not always replace 
morphological approaches (Altermatt et  al.,  2020; Bush et  al.,  2019; 
Seymour et  al.,  2020) and proposed that eDNA-based biodiversity 
assessments should complement morphological approaches (e.g. 
Groendahl et al., 2017; Seymour et al., 2020). However, to our knowl-
edge, there is no standardized method to fully combine the species lists 
from both approaches.

We present a framework to pair datasets from eDNA metabar-
coding (hereafter eDNA) and morphological (hereafter morphology) 
approaches to improve the resolution of biodiversity assessments. 
The framework is based on three increasingly restrictive workflows 
(Figure 1), which can be applied independently of each other, accord-
ing to the ecological question at hand. (a) Additive workflow, for iden-
tification of rare species, detection of endangered or invasive species, 
or for studies in areas less explored or remote locations. Here, taxo-
nomic assignment match between eDNA and morphology is assessed, 
and the remaining taxa identified by each approach are added to cre-
ate a hybrid dataset (i.e. containing taxa from the two approaches). (b) 

Taxonomic Correction workflow, for use in monitoring programmes, 
where after performing a taxonomic match between eDNA and mor-
phology, an assessment of taxonomic identification match at genus 
level is done, and the taxonomic assignment is corrected using the 
lowest level of identification (regardless of dataset has the lowest 
level of identification). And (c) Geographical Fit workflow, for stud-
ies where quantification of species’ abundances and biomasses are 
needed (e.g. food webs). Here, following the previous steps, the taxa 
retained from eDNA are checked for their geographical fit to the stud-
ied regions through automated data-mining and targeted literature 
(e.g. check if taxa have been previously found in the same regions, 
biomes).

To demonstrate the power of the proposed framework, we used a 
novel dataset obtained through approximately 300-hybrid biodiver-
sity aquatic surveys (simultaneous eDNA and morphology assess-
ments) conducted across the Iberian Pond Network, a multi-region 
experimental facility of freshwater pond mesocosms (http://www.
iberi​anpon​ds.uevora.pt). Within it we surveyed freshwater commu-
nities of phytoplankton, zooplankton and macroinvertebrates over 
time and across a biogeographical gradient. The proposed frame-
work seeks to improve the resolution of biodiversity assessments 
through improved species detectability, taxonomic resolution and 
community structure, by assigning abundance and biomass to as 
many species as possible. This will allow eDNA to be used not only in 
qualitative biodiversity assessments but also in quantitative descrip-
tions of community structure.

2  | MATERIAL S AND METHODS

2.1 | Iberian Ponds Network

The Iberian Ponds Network is a multi-region experimental facility 
using 192 freshwater pond mesocosms (1,000 L plastic tanks, Prebac 

F I G U R E  1   Framework to pair 
eDNA metabarcoding and morphology 
datasets. This framework comprises three 
different workflows: Additive, Taxonomic 
Correction and Geographical Fit
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1000, La Buvette, France; hereafter ponds) distributed across six 
locations in the Iberian Peninsula, ranging from southern semi-arid 
(Murcia, Toledo), temperate (Évora, Porto) and alpine environments 
(Jaca and Madrid; Figure S1), varying in annual average temperature 
and total precipitation (more details on the climate of each region 
in Supporting Information). These ponds mimic natural ponds, hav-
ing been originally inoculated and colonized by all sorts of organisms 
from bacteria to small vertebrates. In the southern sites, the ponds 
behave as temporary ponds, annually alternating phases of flood and 
drought. Since the dry season can have a duration of 3–8 months, 
usually during summer and autumn, fieldwork was carried out in the 
six locations every Spring from 2016 to 2018. Considering the cli-
matic and environmental conditions of each location, fieldwork was 
done from the south (April) to the north (June) of Iberia to ensure 
sampling during the ponds’ wet phase. Each pond was sampled once 
a year.

2.2 | eDNA metabarcoding

Water samples for eDNA analysis (500 ml) were filtered through en-
closed 0.22 μm Sterivex unit filters (EMD Millipore Corporation) using 
a Waterra Easy Load II peristaltic pump (In-Situ Europe Ltd). All ex-
tractions were done with a modified protocol using the QIAGEN DNA 
Blood and Tissue Kit (Spens et al., 2017). Field and extraction blanks 
were added, to control possible contaminations during field handling, 
transport and DNA extractions. DNA was PCR amplified in duplicates 
from the extracts using two primer sets: (a) primers 1380F and 1510R 
(Amaral-Zettler et al., 2009) to amplify the V9 region of eukaryotic 
18S rRNA gene targeting phytoplankton and (b) primers mlCOIintF 
and jgHCO2198 (Geller et al., 2013; Leray et al., 2013) were used to 
target the mitochondrial Cytochrome c Oxidase I (COI) gene for meta-
barcoding metazoan diversity (zooplankton and macroinvertebrates). 
PCR negative controls (molecular grade water) and PCR positive 
controls (DNA from species not present in the study system) were 
also added. PCR products from each primer set were subsequently 
combined into different amplicon pools, which were converted into 
Illumina sequencing libraries following the Blunt-End-Single-Tube 
(BEST) protocol (Carøe et al., 2018). Indexed amplicon libraries were 
sequenced using 250 bp paired-end on an Illumina MiSeq platform 
at the National High-throughput Sequencing Centre, Copenhagen, 
Denmark. Illumina sequences were then analysed using DADA2 
(Callahan et al., 2016). Taxonomic assignment was performed using 
BLASTn and the NCBI nt database (Benson et al., 2005) at 97% simi-
larity, and classification was attributed using the software MEGAN 
Community Edition (Huson et al., 2016). Taxonomic assignments and 
their associated amplicon sequence variants (ASVs) that returned in-
complete taxonomy or unknown identifiers were excluded from fur-
ther analysis. An additive strategy was used regarding the number of 
PCR replicates (Alberdi et al., 2017), that is, through combining the 
sequences of all PCR replicates from one sample to maximize diversity 
detection (e.g. Leray & Knowlton, 2015). Further details are shown in 
Supporting Information.

2.3 | Morphology

Three different trophic groups were surveyed using standard sam-
pling procedures: phytoplankton, zooplankton and macroinver-
tebrates. For phytoplankton and zooplankton identification and 
enumeration, samples were concentrated in 100  ml by filtering 
3 and 5 litres, respectively, of water through plankton nets with 
mesh size of 20  µm for phytoplankton and 53  µm for zooplank-
ton. Macroinvertebrates were sampled using a 50  L core, which 
represented 5% of the total volume of the ponds, and a net with 
mesh size of 500 µm, and samples were preserved in 96% ethanol. 
Morphological identification was done to the lowest taxonomic level 
possible for all three trophic groups. Individuals’ enumeration was 
done using a light microscope (phytoplankton and rotifers) and a 
stereo microscope (cladocerans, copepods and macroinvertebrates) 
using standard methods for each trophic group. Species’ biomasses 
were calculated by their dry weights, which was estimated from pub-
lished allometric relationships using individual measurements.

2.4 | Workflows to pair eDNA and morphology

All workflows require (a) an eDNA taxa*site matrix and (b) a cor-
responding morphological taxa*site matrix, both with unique taxa 
names (as rows), with the respective taxonomy (from Domain to 
Species) followed by their abundance (or number of reads for eDNA) 
across the studied samples (as columns). The first step to pair eDNA 
and morphology datasets is common to all three workflows (Figure 1) 
and consists of checking the taxonomic assignment match between 
morphology and eDNA, that is, check taxa shared by the morphol-
ogy and eDNA, and abundances obtained through morphology are 
assigned to these taxa. Then the three workflows are implemented 
to combine both datasets with no restrictions (Additive), with taxo-
nomic filters (Taxonomic Correction) and with both taxonomic and 
geographical filters (Geographical Fit; Figure 1). (a) Additive work-
flow: After the first step, the remaining taxa identified by each ap-
proach are accepted. Abundances estimated through morphological 
methods are retained, and in any sample where a taxon is identified 
with eDNA but not with morphology, the number of reads for that 
taxon is replaced by 1 to keep the information of its presence. (b) 
Taxonomic Correction workflow: Mismatched taxa after the first 
step are checked to select genera shared by both approaches. If 
there is a different level of identification between approaches within 
the same genus, the identification is corrected using the lowest level 
of identification, independently of which dataset has the lowest level 
of identification. When matching taxa from a genus identified with 
morphology (e.g. Chironomus sp.) and a species of the same genus 
identified by eDNA (e.g. C. aprilinus and C. riparius), it becomes nec-
essary to assign the abundances from morphology to one or more 
species. To automate this procedure, we implemented the R func-
tion redistributeAbundances (Supporting Information section 1.4 and 
Figure S2), whose main purpose is to assign abundances from the 
genus identified with morphology proportionately using the relative 
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frequencies of the number of reads from each species. There are 
three possible routines to assign abundances depending on the num-
ber of taxa matched: if there is one single taxon of the genus; if there 
is one single taxon of the genus identified with eDNA and multiple 
taxa identified with morphology; and, if there are multiple taxa of 
the genus identified with eDNA. The function checks these numbers 
of taxa from the same genus and acts accordingly. If the taxon with 
the lowest level of identification is from morphology, it is accepted 
as well as its abundance. However, if the taxon with the lowest level 
of identification is identified with eDNA, its taxonomy is accepted, 
and the number of reads is transformed into relative frequencies. 
Then, the abundances from the genus identified with morphology 
are redistributed by the eDNA species proportionately by its relative 
frequencies using the redistributeAbundances function. The remain-
ing taxa identified by each approach are accepted, keeping abun-
dances for morphologically identified taxa, and 1 to eDNA identified 
taxa. And finally, (c) Geographical Fit workflow: After the first step 
(i.e. ‘full match’), a match at genus level is also performed, followed 
by taxonomic correction using the lowest level of identification. 
Taxa abundances are treated in the same way as in the Taxonomic 
Correction workflow. Remaining mismatched taxa from the mor-
phology are accepted, retaining its abundances. The geographical fit 
of the remaining taxa from eDNA is assessed by (3.1) checking if each 
taxa occurs more than once in ponds from the same region; (3.2) 
checking if these taxa have occurrences registered for the Iberian 
Peninsula in the Global Biodiversity Information Facility (GBIF) using 
the custom function taxaOccurrencesIP, which uses functions availa-
ble in the rgbif package (Chamberlain et al., 2020); and (3.3) checking 
regional geographical fit with species lists in available literature. To 
avoid false positives, taxa that have only one occurrence, and those 
that do not meet one of the other two conditions, have no records 
for the Iberian Peninsula on GBIF or are not present in species lists 
from literature, are rejected. The remaining taxa are accepted, and 
their corresponding number of reads is replaced by 1, to retain these 
taxa presence. Geographical fit of taxa identified using morphology 
is not assessed computationally because this step is part of the mor-
phological identification protocol, where taxa are checked against 
regional classification keys and records in regional species lists.

2.5 | Data analysis

All analyses were performed using R version 3.6.3 (R Core 
Team, 2020). From a pool of 576 samples available from eDNA and 
morphology, a random selection was done using the function sample 
from base R to ensure balance across regions and years (18 samples 
per region per year). The resulting subset consisted of a total of 324 
samples matching eDNA and morphology. Separate analyses were 
performed with either the (a) full dataset with the 324 samples, with 
all six regions analysed together or (b) six independent regional data-
sets, with 54 samples each.

To assess the performance of eDNA and of the three hybrid data-
sets in comparison to using morphology, or eDNA, alone regarding 

taxa detection, a log-ratio was applied to taxa richness (TR) of each 
dataset using the formulas log10(TRdataset/TRMorphology) and log10  
(TRdataset/TReDNA), accordingly. A positive result indicates that the 
dataset used outperforms morphology, a negative result indicates 
that morphology outperforms the dataset used, and a result equal 
to zero shows an equal performance between morphology and the 
dataset being analysed. Similar log-ratios were used in other studies 
(e.g. Cardinale et al., 2006; Mayer-Pinto et al., 2016), and are widely 
used as they estimate a proportional difference between treatments 
that can be readily compared (Cardinale et al., 2006). To test for dif-
ferences between datasets, an analysis of variance (one-way ANOVA) 
was used with ‘Dataset’ and ‘Richness’ as main factors. A two-way 
ANOVA was used with ‘Region’, ‘Dataset’ and ‘Richness’ as main fac-
tors, to test for differences between regions and datasets.

Taxa accumulation curves, which represent the number of taxa 
accumulated in an inventory correlated with the actual sampling ef-
fort, are a powerful tool to standardize the estimations of obtained 
richness and a direct expression of β-diversity, and the rate at which 
diversity increases from local to regional scales (Terlizzi et al., 2014). 
Sample-based taxa accumulation curves, that take account sample 
heterogeneity, were developed using the function specaccum from 
vegan package (Oksanen et al., 2019) with method random and 100 
permutations.

Diversity profiles were calculated for each dataset using the 
function div_profile and visual represented using the function div_
profile_plot from hilldiv package (Alberdi & Gilbert, 2019a), a frame-
work developed around Hill numbers (Alberdi & Gilbert,  2019b) 
that encompasses a group of diversity measures that quantify di-
versity and is expressed in units of effective number of taxa. Within 
this Hill numbers’ framework, diversity profiles show the differ-
ent components of diversity, that is, the number of taxa and their 
evenness. The sensitivity towards abundant and rare taxa can be 
modulated using the scaling parameter q value (order of diversity). 
The larger the q value, the higher is the importance attributed to 
abundant taxa. Three q values are particularly relevant, both for 
their significance, and their close relationship to popular diversity 
indices: (a) q = 0, it becomes insensitive to taxa frequencies, thus 
yielding a richness value; (b) q = 1, weights taxa proportionately by 
their frequency, and the value it yields is exactly the exponential 
of the Shannon index; q = 2, abundant taxa are overweighted, and 
it yields the multiplicative inverse of the Simpson index (Alberdi & 
Gilbert, 2019b). An abundances-based approach was used, where 
the unit used to compute diversity with eDNA was the relative 
number of DNA sequences assigned to each taxon while relative 
abundances were used to compute diversity with morphology.

3  | RESULTS

3.1 | Taxonomic resolution

A total of 443 taxa were identified across the 324 samples, using 
morphology (Table 1). Numbers of taxa per pond ranged between 
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5 and 61 (average = 26  ±  9.22). From the 443 taxa, 63% were 
identified to species level, 30% at genus level and 7% to coarser 
taxonomic resolution (Figure S3). With eDNA, a total of 412 taxa 
were identified after bioinformatic processing of the sequence 
data (Table 1). Taxa numbers ranged between 1 and 158 (average 
= 15 ± 21.13) per pond, of which 70% were identified to species 
level, 19% to genus level and 11% to coarser taxonomic resolu-
tion (Figure S3). Overall, eDNA yielded finer taxonomic resolution 

than morphology. The same patterns were observed when ana-
lysing the datasets grouped by region, with taxonomic resolution 
from morphology varying between 54% and 61% (Madrid and 
Jaca, respectively) at species level, and 30 (Murcia and Porto) and 
38% (Madrid) at genus level (Figure  S4). With eDNA, the taxo-
nomic resolution varied between 64% and 71% (Murcia and Porto, 
respectively) at species level, and 18% and 21% at genus level 
(Figure S4).

TA B L E  1   Contribution of each step of the framework to pair datasets from eDNA metabarcoding and morphology approaches to the 
final number of taxa in the hybrid datasets with Additive Workflow, Taxonomic Correction Workflow and Geographical Fit Workflow. 
N = Number of taxa. Percentages are related to the final number of taxa in each hybrid dataset

All sites Murcia Toledo Évora Porto Jaca Madrid

Initial Datasets Morphological N 443 154 184 205 223 216 159

eDNA N 412 128 112 175 207 177 151

Hybrid 
Datasets

Additive Full Match N 59 17 11 19 23 22 16

% 7.41 6.42 3.86 5.26 5.65 5.93 5.44

Taxa present only in 
Morphological

N 384 137 173 186 200 194 143

% 48.24 51.70 60.70 51.52 49.14 52.29 48.64

Taxa present only in 
eDNA

N 353 111 101 156 184 155 135

% 44.35 41.89 35.44 43.21 45.21 41.78 45.92

Taxonomic 
Correction

Accepted Taxa N 796 265 285 361 407 371 294

Full Match N 59 17 11 19 23 22 16

% 8.43 7.14 4.23 5.81 5.99 6.38 6.02

ID Correction: Total N 216 14 24 45 46 22 25

% 30.86 5.88 9.23 13.76 11.98 6.38 9.40

ID Correction: From 
Morphological

N 101 1 7 15 21 7 8

% 14.43 0.42 2.69 4.58 5.47 2.03 3.01

ID Correction: From 
eDNA

N 115 13 17 30 25 15 17

% 16.43 5.46 6.54 9.16 6.51 4.35 6.39

Taxa present only in 
Morphological

N 261 130 159 154 171 181 126

% 37.29 54.62 61.15 47.09 44.53 52.46 47.37

Taxa present only in 
eDNA

N 164 77 66 109 144 120 99

% 23.43 32.35 25.38 33.33 37.50 34.78 37.22

Accepted Taxa N 700 238 260 327 384 345 266

Geographical 
Fit

Full Match N 59 17 11 19 23 22 16

% 9.32 8.17 4.87 6.71 7.17 7.56 7.27

ID Correction: Total N 216 14 24 45 46 22 25

% 34.12 6.73 10.62 15.90 14.33 7.56 11.36

ID Correction: From 
Morphological

N 101 1 7 15 21 7 8

% 15.95 0.48 3.09 5.30 6.54 2.41 3.64

ID Correction: From 
eDNA

N 115 13 17 30 25 15 17

% 18.17 6.25 7.52 10.60 7.79 5.15 7.72

Taxa present only in 
Morphological

N 261 130 159 154 171 181 126

% 41.23 62.50 70.35 54.42 53.27 62.20 57.27

Taxa present only in 
eDNA

N 97 47 32 65 81 66 53

% 15.32 22.60 14.16 22.97 25.23 22.68 24.09

Retained Taxa N 633 208 226 283 321 291 220

Rejected Taxa N 74 30 34 44 63 54 46
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Our three different workflows that pair the morphology 
and eDNA data use increasingly restrictive filters to retain taxa. 
Consequently, the more filters applied in the workflow, the smaller 
the number of species in the resulting hybrid dataset. As the Additive 
workflow contains no restrictive filters, it revealed a greater number 
of species (Figure 2a). The Taxonomic Correction (Figure 2b) yielded 
fewer taxa, and the most restrictive Geographical Fit workflow 
yielded the lowest number of species (Figure 2c; Table 1; Figures S5–
S10). The number of taxa shared by both approaches was 59, which 
represents 7%–9% of the final number of taxa in the hybrid data-
sets (Additive: 7.49%; Taxonomic Correction: 8.43%; Geographical 
Fit: 9.32%; Figure 2, Table 1). Overall, regions with greater numbers 
of taxa showed greater taxonomic assignment matches (Table  1, 
Figures S5–S10), which varied between 11 and 23 taxa in Toledo and 
Porto, respectively. However, despite the low taxonomic assignment 
match, both approaches identified similar environmental gradients, 
with regions exposed to greater environmental filters, for example, 
higher temperatures in southern regions (Murcia and Toledo) and 
colder temperatures in mountain tops (Jaca and Madrid), being less 
diverse than temperate regions (Évora and Porto).

By implementing the genus-to-species correction step in the 
Taxonomic Correction and Geographical Fit workflows, it was possi-
ble to improve the taxonomic resolution of 216 taxa to species level, 
representing a total of 31% and 34% of the final number of species in 
these hybrid datasets, respectively (Figure 2b,c). This improvement 
decreased when analysing datasets within each region, varying be-
tween 6% and 14% in the Taxonomic Correction, and between 7% 
and 16% in the Geographical Fit hybrid dataset (Table 1, Figures S5–
S10). In all sites, eDNA contributed most to correcting taxonomy 
from genus to species level, improving taxonomic resolution by up 
to 10% when compared to using morphology alone (Table 1). In some 
regions, for example, Murcia and Évora, taxonomic resolution was 
only marginally improved by up to 4% when compared to only using 
eDNA (Figure  S4). Furthermore, the genus-to-species correction 
step allowed assigning traits from taxa (e.g. abundance and biomass 
obtained through morphology) to 12%–14% of the retained eDNA 
taxa in the hybrid datasets obtained with Taxonomic Correction 
and Geographical Fit, respectively. When analysing datasets by 
geographical region, these percentages increased by up to 41% in 
Toledo with the Geographical Fit workflow (Table S1).

3.2 | Approach performance assessments

To assess the performance of taxa detection when using either mor-
phology (Figure 3), eDNA (Figure S11), or each of the three hybrid 

F I G U R E  2   Contribution of each filter of the framework 
to pair datasets from eDNA metabarcoding and morphology 
approaches to the final number of taxa in (a) Additive workflow, (b) 
Taxonomic Correction workflow and (c) Geographical Fit workflow. 
Percentages are related to the final number of taxa in each hybrid 
dataset
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datasets, a log-ratio was applied to taxa richness (TR) of each data-
set. Except for Porto and Madrid (Figure S12), morphology consist-
ently outperformed eDNA in relation to taxa richness (Figure  3; 
Figure S11), with significant differences between datasets (ANOVA: 
p < 0.05). Furthermore, all hybrid datasets yielded higher taxa rich-
ness than morphology and eDNA on their own (Figure 3, Figures S11 
and S12), with significant differences between datasets (ANOVA: 
p < 0.05).

3.3 | Diversity analysis

Taxa accumulation curves revealed that, on their own, morphology 
and eDNA were either clearly approaching or reached an asymp-
tote (Figure 4a); thus, when used independently, these approaches 
reached their ability to identify new taxa in these ponds. The taxa 
accumulation curves derived from the hybrid datasets showed faster 
accumulation rate of taxa (steeper slopes) and the Additive was still 
not approaching an asymptote, which indicates that morphology and 
eDNA are identifying different taxa. In the Taxonomic Correction 
and Geographical Fit hybrid datasets, the accumulation rate was 
slightly slower than in Additive, which also reflects the differences in 
taxonomic resolution obtained in the different datasets.

Diversity profiles using Hill numbers were used to show differ-
ent components of diversity, number of taxa and their evenness 
(Figure  4b; Figure  S13). Increasing the weight given to the most 
abundant taxa (higher q) revealed that the communities become 
more even (flat profile; Figure  4). The same was observed when 

subsetting datasets by region (Figure S13). Overall, diversity profile 
analyses showed that the studied freshwater communities are dom-
inated by few taxa independent of the approach used, and there are 
greater numbers of rare taxa.

4  | DISCUSSION

To improve the resolution of biodiversity assessments, we de-
veloped a framework that builds on the advantages of eDNA and 
morphology using a series of taxonomic and geographical filters. It 
has been proposed that eDNA can revolutionize biodiversity assess-
ments given its ability to sample broad biodiversity in one stroke 
(Altermatt et al., 2020; Pawlowski et al., 2018). Although eDNA stud-
ies are often used in local conservation studies, a number of studies 
have used eDNA for ecological research and monitoring at broad 
geographical scales (Taberlet et al., 2018). We content, however, it 
that eDNA-based diversity assessments might not always substitute 
morphological-based ones, rather serving as a complement to it (see 
also Altermatt et al., 2020; Bush et al., 2019).

Our datasets highlighted some limitations of both morphology 
and eDNA approaches. eDNA presented a finer taxonomical reso-
lution. It is difficult to identify all specimens to species level with 
morphology, even with the best taxonomic expertise available, 
since (a) many early life stages lack necessary diagnostic features 
(Elbrecht et  al., 2017; Pawlowski et  al., 2018), (b) some specimens 
may not be complete, (c) there is a need for complete identification 
keys and (d) human error plays an important role as well. Species are 
subsequently aggregated at higher taxonomic ranks, decreasing tax-
onomic resolution, obscuring species-level responses and constrain-
ing our knowledge of whether species’ environmental preferences 
are conserved or variable (Bush et al., 2019; Macher et al., 2016). In 
the present study, morphology presented a slightly higher species 
richness, and the number of taxa shared by both approaches was low 
(only 59 out of 633–796 taxa, representing 7%–9%, depending on 
the workflow, for the dataset with all regions). While there is a pleth-
ora of evidence that eDNA can increase the precision and resolution 
of biodiversity surveys (e.g. Cahill et al., 2018; Serrana et al., 2019; 
Seymour et  al.,  2020, 2021), this is certainly not universally true, 
as several studies (e.g. Beentjes et al., 2019; Beng & Corlett, 2020; 
Hinlo et  al.,  2017) report morphology outperforming eDNA. Also, 
the low overlap of common taxa shared among the two approaches 
is not unusual; especially when studying invertebrates (e.g. Seymour 
et al., 2020, 2021), due to mixed class identification that is used for 
conventional invertebrate biomonitoring, which is often limited to 
family level (Morse et al., 2007). Low overlap can also happen when 
studying groups that are less represented in public databases, for ex-
ample, diatoms, which have an extensive inconsistency of taxonomy 
names between existing studies and databases (Mann, 1999). Also, 
a crucial step for any metabarcoding study is the selection of prim-
ers used to amplify specific DNA sequence marker regions, as they 
determine the taxonomic groups under study and resolution of as-
signment (Gibson et al., 2014), and different primer sets for the same 

F I G U R E  3   Performance of morphology approaches compared 
with eDNA and with the three hybrid datasets (Additive, Taxonomic 
Correction and Geographical Fit) to detect taxa, a log-ratio was 
applied to taxa richness (SR) of each dataset using the formula 
log10(TRdataset/TRMorphologyl). Morpho: Morphology, eDNA: 
Environmental DNA, TaxCor: Taxonomic Correction, GeoFit: 
Geographical Fit
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taxa may present different results (Corse et  al.,  2019; Schenekar 
et al., 2020). Barcoding regions are well defined for some taxonomic 
groups (e.g. bacteria and fungi) while others are still under debate 
(e.g. microeukaryotes), because these regions often span across a 
large phylogenetic branch and do not always perform equally well 
for all involved taxonomic groups (Altermatt et al., 2020), and there 
is often primer bias (Elbrecht & Leese, 2015). These aspects hinder 
the equal amplification and thus detection of all targeted taxonomic 
groups in the same sample.

The framework we presented combines the species lists from 
both eDNA and morphology with increasingly restrictive criteria to 
retain eDNA detected taxa. The Additive workflow imposes no tax-
onomic filtering, resulting in complete retention of identified taxa. 
Although no standard method exists for combining the species lists 
from these two approaches, other studies have combined eDNA 
and morphology (like our Additive workflow), into complementary 
tools for comprehensive biodiversity assessments and more accu-
rate ecologically effective management strategies (e.g. Groendahl 
et al., 2017; Harper et al., 2020). By simply checking the taxonomic 
assignment overlap between morphology and eDNA, and by adding 
the remaining taxa identified with both approaches, it was possible 
to recover a total of 796 taxa. However, it may increase the possibil-
ity of false positives (i.e. false presences), which can potentially arise 
from metabarcoding data through contamination during sampling 
or laboratory work, PCR and sequencing errors, and poor reference 
database coverage or quality (Ficetola et  al.,  2016; McClenaghan 
et  al.,  2020). Strict bioinformatic filtering helps to minimize the 

inclusion of these errors in resulting datasets, but the possibil-
ity of false positives cannot be eliminated (Ficetola et  al.,  2016; 
McClenaghan et  al.,  2020). Since morphological-based identifica-
tion depends on taxonomic expertise, it is prone to human error 
(Hajibabaei et  al., 2011; Serrana et  al., 2019) and it is not without 
the risk for false positives. Therefore, all morphology identifications 
were checked against regional classifications keys and in regional 
species lists. Nevertheless, combining morphology and eDNA ap-
proaches can be useful for detecting unexpected endangered or 
invasive species, taking advantage of the detection capability of 
eDNA (Bista et  al.,  2017) and getting data on community struc-
ture provided by morphology. Other studies that have successfully 
combined eDNA and morphology have increased the resolution of 
biodiversity assessments when monitoring invasive (e.g. Bylemans 
et al., 2016) or threatened (e.g. Harper et al., 2020) species distribu-
tions, and helped guide management decisions, in both areas from 
which little biodiversity data are available (e.g. Delabye et al., 2019), 
and complex communities (e.g. Groendahl et al., 2017).

As highlighted before, morphological identification of diverse 
taxonomic groups, such as invertebrates, is challenging, for ex-
ample, non-biting midges (Chironomidae) are extraordinarily well-
suited as environmental indicators in freshwater biomonitoring. 
Nevertheless, these organisms are excluded from many national 
monitoring programmes due to their complex taxonomy, insuffi-
ciently described early stages and resource demanding identifica-
tion (Ekrem, 2019). A major advantage of eDNA over morphology 
identification is the ability to generate more accurate identifications 

F I G U R E  4   Taxa accumulation curves (a) and Hill's diversity profiles (b) of each dataset. Taxa accumulation curves represent the number 
of taxa accumulated in an inventory in relation to the actual sampling effort (number of samples). Diversity profiles show the different 
components of diversity (i.e. the number of taxa and their evenness) and its sensitivity towards abundant and rare taxa is modulated using 
the scaling parameter q value (order of diversity)
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in a consistent manner (Elbrecht et al., 2017). However, if specimens 
are misidentified at the time of sequence deposition, reference li-
brary sequences become associated with an incorrect taxonomic 
name (Bush et al., 2019). Taxonomic Correction workflow allowed to 
rectify the taxonomy of more than 200 taxa to species level (>30% 
of the total taxa of the hybrid dataset). By increasing the taxonomic 
resolution to species level, Taxonomic Correction workflow can be 
of greater importance for biomonitoring, especially for freshwater 
biomonitoring programmes. eDNA contributed the most to rectify 
taxonomy from genus to species level, which may seem contradic-
tory, since eDNA showed less diversity. However, within the gen-
era shared among the two approaches, several were only identified 
at genus level with morphology (e.g. Chironomus, Chlamydomonas, 
Oedogonium), while with eDNA, several species were identified 
within the same genus (e.g. Chironomus and Chlamydomonas 4 
each, Oedogonium 6). This happens mainly with phytoplankton and 
macroinvertebrates, where taxonomic resolution was greater with 
eDNA (Figure  S14). Additionally, with other genera, even though 
both approaches identified the same number of species (e.g. 
Agabus bipustulatus and A. nebulosus), in some samples those were 
identified only to genus level with morphology, being corrected 
by eDNA to species level. The ability to recognize and genetically 
identify organisms in their early life stages and cryptic species, with 
potentially different environmental preferences, can increase the 
resolution in biological monitoring, especially with rich and widely 
distributed taxa such as chironomids. Thus, this workflow offers the 
potential to include a much wider range of taxa and indicator groups 
that are not currently included, which may allow for a finer-scale 
assessment, particularly in assessing differences among adjacent 
sites or in evaluating moderate changes in environmental condi-
tions (Cordier et al., 2017).

Although progress has been made in recent years, DNA me-
tabarcoding does not provide reliable data on species abundances 
(Elbrecht & Leese,  2015). Thus, for eDNA metabarcoding to be 
used regularly in freshwater biomonitoring, water quality indices 
must rely on presence/absence data. A strong correlation has been 
shown between abundance-based and presence/absence-based 
water quality indices (e.g. Beentjes et al., 2018), illustrating that it 
is possible to incorporate presence/absence metabarcoding data 
into water quality assessment methodology, and implement it into 
routine biomonitoring programmes (Beentjes et  al.,  2018; Bush 
et al., 2019). Nonetheless, regulators have remained hesitant to tran-
sition to monitoring with metabarcoding (Bush et al., 2019). While 
metabarcoding is being established as a monitoring technique and 
while water quality indices are improved (Pawlowski et  al.,  2018) 
by incorporating more species-level information on indicator taxa, 
a combination of morphology and eDNA and the application of the 
Taxonomic Correction workflow presented here represents a viable 
solution, since with the redistributeAbundances function, we were 
able to assign traits, such as body mass, and abundance, up to 76% of 
the final taxa in the hybrid dataset.

Metabarcoding is also being used for increasingly novel applica-
tions, such as the study of trophic interactions, either through direct 

analyses of gut contents, or via the reconstruction of networks 
of multi-trophic assemblages (Bohan et  al.,  2017), based on next-
generation sequencing co-occurrence data. There have been ef-
forts to improve DNA-based co-occurrence networks (e.g. Compson 
et al., 2018, 2019; Djurhuus et al., 2020) by reducing the putative 
interactions to more probable interactions using information about 
traits (e.g. body size, trophic feeding group; see for discussion 
Morales Castilla et al., 2015). However, using presence/absence data 
from metabarcoding to reconstruct trophic networks does not cap-
ture abundance changes in species populations and the dynamics of 
trophic interactions, as one cannot assume presence of interactions 
based on geographical co-occurrence of species (Araújo et al., 2011; 
Cazelles et al., 2016). By combining morphology and eDNA with the 
Geographical Fit workflow, besides improving taxonomic resolution 
comparing to morphology, it was possible to assign species’ traits 
(e.g. body size) and abundance to 85% of the total number of taxa in 
the final hybrid dataset with all regions, and to 77%–86% of the total 
number of taxa in the final hybrid datasets when treating each site as 
an independent dataset. Obtaining measurements of species’ traits 
(e.g. body size, population structure) across time and space would be 
more informative, and could reveal seasonal shifts in species inter-
actions (González-Varo & Traveset, 2016).

Trait-based approaches are commonly used to explore and 
understand the diversity of forms and functions within an eco-
system, and they have been used to approximate some aspects 
of ecosystem functioning (Naeem et al., 2012), including trophic 
interactions (e.g. Albouy et  al.,  2019; Mendoza & Araújo,  2019). 
Identification of key traits associated with different types of in-
teraction holds great potential for further understanding the 
strength of the evolutionary processes structuring the architec-
ture of real-world networks (Hervías-Parejo et  al.,  2020). One 
example is species’ body size (Ings et  al., 2009; Morales-Castilla 
et al., 2015), as this trait is a determinant of consumer–resource 
interactions in food webs and can also determine interaction 
strength (Berlow et  al.,  2009). Occurrence of interactions be-
tween species (e.g. consumer–resource or plant–pollinator pairs) 
depends on the matching between the traits of the interacting 
pairs (Bartomeus et al., 2016; Morales-Castilla et al., 2015). Trait-
matching approaches have been widely used to infer ecological 
networks across different systems, ranging from terrestrial (Laigle 
et al., 2018), to freshwater (Pomeranz et al., 2018), to marine eco-
systems (Pecuchet et al., 2020). Morphology allowed also to dis-
tinguish the different life stages of each species, which is of great 
importance since it is possible that some trophic interactions are 
not persistent in time or spatially dominant (Olivier et al., 2019); 
for example consumers may undergo ontogenetic dietary shifts 
(McMeans et al., 2015).

In the Geographical Fit workflow, every taxon with only one 
occurrence and with no occurrences in GBIF or in literature in the 
studied regions were rejected, having greater loss of information 
and, consequently, lower uncertainty and lower probability of false 
positives. Thus, this workflow is suitable, not only for studies on eco-
logical networks but also for conservation programmes, providing 
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efficient insights on the distribution of species, and estimation of 
abundance and population sizes, which all provides the basis of tak-
ing appropriate conservation actions (e.g. Anderson et al., 2020).

In conclusion, the proposed framework highlights and focuses 
on the best that both eDNA and morphology approaches have to 
offer. As DNA sequencing capacity continues to increase, there is 
a growing interest from the research community, as well as envi-
ronmental managers, for guidance in how to apply these new tools 
and show their improvements over morphology. eDNA has been 
successfully applied to a plethora of different studies; however, it is 
important to highlight that comparisons between morphology and 
eDNA identifications are far from straightforward (Bush et al., 2019; 
Seymour et al., 2020). Our results support the view shared by sev-
eral authors (e.g. Altermatt et al., 2020; Bush et al., 2019) that eDNA 
will complement rather than replace morphology approaches and, 
instead of highlighting the limitations of less established methods in 
areas that more conventional methods handle well, the focus should 
be on the strengths of the new methods in areas that conventional 
methods address inadequately. Since one of the advantages of 
eDNA approaches is their cost-efficacy, biodiversity surveys should 
aim towards paired and stratified sampling strategies (in space and 
time) using both eDNA and morphology (for quantification of spe-
cies’ traits and abundances) as a function of the question at hand. In 
the present scenario of global change, where accurate predictions 
about species’ distributions and biological responses are needed to 
effectively conduct management and conservation of ecosystems 
(Araújo et al., 2019), quantifying biodiversity accurately is of the es-
sence. Developing approaches, such as the one presented here, that 
integrate already available methods, will get us closer to enhanced 
biodiversity assessments.
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