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Resumo

Este trabalho incide no estudo de algumas geometrias finitas, de um ponto de
vista axiomético. Sdo apresentadas e estudadas as seguintes geometrias: a ge-
ometria dos quatro pontos, a geometria dos trés pontos, a geometria dos sete
pontos, a geometria dos nove pontos e doze retas, a configuracio de Desargues,
a configuragao de Papo, planos e espagos projetivos finitos e planos afins finitos.

Palavras chave: geometrias finitas, planos e espagos projetivos, sistema axi-
omatico.






Abstract

Finite geometries

In this work we study a few finite geometries, from an axiomatic point of view.
The following geometries are presented and studied: four-point geometry,
three-point geometry, seven-point geometry, nine-point-and-twelve-line geo-
metry, Desargues configuration, Pappus configuration, finite projective planes
and spaces, and finite afine planes.

Key-words: finite geometries, projective planes and spaces, axiomatic sys-
tem.
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Introducao

A geometria finita é uma geometria baseada num conjunto de axiomas, ter-
mos indefinidos, termos definidos e relagbes que limitam o conjunto de todos
os pontos e o conjunto de todas as retas a um namero finito. O estudo desta
geometria, do qual Gino Fano (1871-1952) foi um dos pioneiros, sofreu um de-
senvolvimento significativo a partir do inicio do século XX. Atualmente esta
relacionada com algumas 4reas da matemadtica, como por exemplo, teoria de
codigos, criptografia, teoria de grupos e combinatéria. Ao longo deste trabalho
iremos introduzir véarios tipos de geometrias finitas, comecando pelas que pa-
reciam mais simples, nas quais foram abordados alguns conceitos importantes.
Cada uma das geometrias serd abordada por via axiomatica. Comegamos por
introduzir em cada uma delas os seus axiomas e a partir destes enunciaremos
e demonstraremos vérios resultados que nos ajudardo a compreendé-las. Um
sistema axiomatico é uma estrutura ldgica organizada constituida por termos
indefinidos, termos definidos, axiomas e outros resultados a que podemos cha-
mar lemas, corolarios e teoremas. Ao tentarmos definir um termo necessitamos
de outras palavras, que por sua vez, necessitam de outras palavras, facilmente
chegamos a um circulo vicioso, surgindo assim a necessidade de ndo definir
todos os termos. Utilizaremos os termos ponto, reta e relagdo de incidéncia
como termos indefinidos. Todos os termos que utilizaremos sio definidos a
partir destes. Os axiomas sdo afirmacdes que sdo aceites como verdadeiras sem
demonstragdo. Sdo essenciais nos sistemas axiomaticos porque precisamos de
um conjunto de afirmacdes iniciais a partir do qual iremos deduzir e demons-
trar outras afirmagdes. A estas novas afirmacfes chamamos lemas, corolarios
e teoremas. Abordaremos algumas carateristicas de um sistema axiomatico. A
um sistema axiomatico no qual ndo existam contradi¢des entre quaisquer duas
afirmagdes chamamos sistema consistente. Uma forma de provar a consistén-
cia de um sistema é apresentar um modelo que o satisfaga. Um modelo é um
conjunto de objetos, que tomam o papel de pontos e retas, e relagdes entre esses
objetos, que correspondem a relacao de incidéncia. Outra carateristica que po-
dem ter os sistemas axiomaéticos é a independéncia: dizemos que um sistema
¢ independente se nenhum axioma pode ser provado a partir dos outros axio-
mas. Os sistemas axiomdticos independentes permitem-nos conhecer melhor a
geometria em questdo. Outro atributo que poderemos verificar em alguns sis-
temas axiomaéticos € que se trocarmos a palavra ponto por reta e vice-versa nos
axiomas, vamos obter afirmagdes que ainda sdo verdadeiras neste sistema axi-
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omatico. Um sistema nestas condigdes diz-se que satisfaz o principio da duali-
dade. No primeiro capitulo iremos dar quatro exemplos de geometrias finitas:
a geometria dos quatro pontos, a geometria dos trés pontos, a geometria dos
sete pontos e a geometria dos nove pontos e doze retas. No primeiro exemplo
introduziremos os conceitos de consisténcia, independéncia e dualidade, acima
referidos. Apresentaremos, em cada uma das geometrias, um modelo para pro-
var a sua consisténcia, daremos um exemplo para demonstrar a independéncia
de cada axioma e iremos verificar se cada um dos sistemas axiomaéticos satis-
faz ou nado o principio da dualidade. Concluiremos que nestes exemplos dados
somente a geometria finita dos trés pontos e a geometria finita dos sete pon-
tos sdo sistemas que satisfazem o principio da dualidade. No segundo capi-
tulo abordaremos a configuragio de Desargues e a configuragdo de Papo. A
configuragdo de Desargues apresenta uma relagio interessante entre pontos e
retas, que é a de polaridade, a qual serd desenvolvida pormenorizadamente.
Ambas as configuragbes satisfazem o principio da dualidade. Terminaremos
o estudo de cada uma das configuragdes com o teorema que lhe dd o nome:
Teorema de Desargues e Teorema de Papo, respetivamente. No terceiro capi-
tulo serdo abordadas as axiomaticas dos planos e espacos projctivos finitos. O
espago projetivo é uma generaliza¢do do plano projetivo, que admite mais de
duas dimensdes. Em ambas as axiomaéticas enunciaremos e provaremos alguns
resultados importantes. Nos planos projetivos finitos construiremos dois mo-
delos dos planos mais simples, um de ordem dois e outro de ordem trés. Em
seguida, faremos uma breve discussdo sobre a existéncia de planos projetivos
de outras ordens. Ainda neste capitulo iremos estabelecer uma conexdo entre
planos projetivos finitos e a teoria de c6digos e entre planos projetivos finitos e
quadrados latinos. Para compreendermos melhor estas conexdes iremos obter
dois c6digos, um a partir de um plano projetivo de ordem dois e outro a partir
de plano projetivo de ordem trés. A existéncia desta relagdo vem contribuir para
dar resposta a questao sobre a existéncia de planos projetivos de uma dada or-
dem. Posteriormente construiremos um conjunto de quadrados latinos a partir
de um plano projetivo de ordem trés e vice-versa. No tltimo capitulo introdu-
ziremos a axiomatica dos planos afins finitos e faremos uma breve comparagao
com os planos projetivos finitos. Verificamos que este sistema axiomatico, ao
contrério do plano projetivo finito, ndo satisfaz o principio da dualidade. Dare-
mos dois exemplos de possiveis modelos, um de ordem dois e outro de ordem
trés. Finalizaremos com um resultado que estabelece uma relagéo entre os pla-
nos projetivos de ordem 7 e os planos afins de ordem n.

12



Notacoes e convencodes

Nos diferentes exemplos de geometrias finitas que iremos abordar neste traba-
lho adotdmos alguns conceitos e terminologias.

Em todos os sistemas axiomaticos tomamos para termos indefinidos: ponto,
reta e relagdo de incidéncia. Utilizamos como sinénimo do termo relagéo de in-
cidéncia os termos: pertencer a, passar em, estar sobre, conter e ter. Por exemplo
as expressOes, a reta r incide no ponto P e o ponto P esta sobre a reta r tém o
mesmo significado.

Consideramos um modelo para um sistema axiomatico como sendo um con-
junto de objetos, que tomam o papel de pontos e retas, e relagdes entre esses
objetos, que correspondem a relagao de incidéncia.

Designamos os pontos por letras maitisculas (por exemplo: ponto P), as re-
tas por letras mintisculas (por exemplo: reta r), os planos por letras gregas (por
exemplo: plano «, plano 3, plano 7). No capitulo 3 na seccéo 3.4 vamos de-
nominar os espagos tridimensionais por letra gregas maitsculas (por exemplo:
espaco tridimensional I').

Além disso, se existe uma tnica reta incidente em dois pontos A e B da-
dos, entdo designamo-la por reta AB. Por conveniéncia, se trés ou mais pontos
forem colineares, podemos designar a reta que incide nesses pontos por uma
sequéncia de letras que os designa. Por exemplo se os pontos A, B, C e D sdo
colineares, podemos designar a reta que neles incide por reta ABCD. Cha-
mamos a atengdo para o facto de esta notagdo ser pouco comum em livros de
geometria, mas optamos pela sua utilizagéo para facilitar a compreensao. No
caso de os pontos ndo serem colineares poderemos denotar da mesma forma
outros objetos, por exemplo podemo-nos referir ao quadrildtero ABCD ou ao
hexagono ABCDEF. Em qualquer dos casos sera sempre identificado o objeto
a que nos estamos a referir.

Algumas retas serdo representadas de forma pouco habitual, nas figuras que
acompanham o texto, isto é, sdo representadas por linhas curvas. Optamos por
esta representagdo porque nalguns casos as relagdo de incidéncia ndo permite
utilizarmos somente segmentos de reta para representarmos uma reta.

Utilizaremos as seguintes defini¢des:

Definicdo 0.0.1 (retas paralelas). Retas paralelas sdo retas que ndo tém nenhum ponto
em comum.

Defini¢do 0.0.2 (colineariedade). Dois ou mais pontos dizem-se colineares se inci-
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direm numa mesma reta.

Definic¢do 0.0.3 (concorréncia). Duas ou mais retas s@o concorrentes se incidirem no
mesmo ponto.

14



Capitulo 1

Primeiros Exemplos de
Geometrias Finitas

1.1 Geometria dos quatro pontos

Este sistema axiomatico, de todos os que iremos apresentar, é o que nos parece
menos complexo, pois partiremos somente de trés axiomas e a partir destes ape-
nas demonstraremos um resultado. Comegaremos por enunciar os seus axio-
mas, posteriormente introduziremos alguns conceitos como o de consisténcia,
o de independéncia e o de dualidade. Este sistema axiomético ndo satisfaz o
principio da dualidade mas o seu dual permite-nos definir um novo sistema
axiomaético, a geometria das quatro retas.

Axiomas:
Axioma A;: Existem exatamente quatro pontos distintos.

Axioma A;: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma Aj: Cada reta tem exatamente dois pontos distintos.

A partir dos trés axiomas anteriores, iremos deduzir resultados que nos per-
mitirdo conhecer a geometria definida por este sistema axiomatico. Para isso é
fundamental que os resultados fagam sentido, n4o nos interessa deduzir atra-
vés deste sistema nenhuma contradigdo. Introduziremos a este prop6sito o pro-
ximo conceito.

Definicdo 1.1.1 (Consisténcia). Um sistema axiomdtico diz-se consistente se dele ndo
for posstvel concluir nenhuma contradicdo.
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Uma forma de demonstrar a consisténcia de um sistema axiomatico é encon-
trar um modelo que o satisfaga. Com o modelo seguinte facilmente verificamos
que os axiomas ndo se contradizem.

Consideremos o modelo em que os pontos séo as letras A, B, C e D e as retas
sdo os segmentos de reta AB, AC, AD, BC, BD e CD, representadas na figura
1.1. Um ponto incide numa reta se for uma extremidade de um segmento de
reta.

C

D
Ay B

Figura 1.1: Um possivel modelo da geometria dos quatro pontos

Verificamos facilmente que os trés axiomas sdo satisfeitos e portanto o sis-
tema axiomatico € consistente.

O nosso objetivo € estudar um conjunto de axiomas que néo estdo relacio-
nados uns com os outros, de modo a compreender melhor toda a estrutura do
sistema. Para tal introduziremos o conceito de independéncia.

Defini¢do 1.1.2 (Independéncia). Num sistema axiomdtico consistente um axioma é
independente se ndo pode ser provado a partir dos restantes. Se cada axioma do sistema
é independente, entdo o sistema axiomdtico diz-se independente.

Para verificar a independéncia deste sistema axiomatico mostraremos a in-
dependéncia de cada um dos axiomas. Para isso recorreremos a exemplos de
modelos que nio verificam o axioma em cauisa, mas que verificam todos os ou-
tros axiomas.

Modelos que demostram a independéncia dos axiomas

Nos exemplos seguintes podemos ver que facilmente se cumprem todos os
axiomas com exce¢do do axioma em questéo.

Axioma A;: Existem exatamente quatro pontos.

Exemplo: Consideremos um modelo contendo exatamente dois pontos R e
S e uma reta incidente nestes pontos (fig. 1.2).

i &
Figura 1.2

Este modelo ndo cumpre o axioma A;.
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1.1 Geometria dos quatro pontos

Axioma A;: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: O modelo constituido pelos pontos P, , Re S e pelas retas P(Q
e RS (fig. 1.3).
R S

———————— o~

—EQ-—QQ—

Figura 1.3

Este modelo ndo cumpre o axioma A;, porque néo existe uma reta incidente
nos pontos P e R, por exemplo.

Axioma Aj: Cada reta tem exatamente dois pontos distintos.

Exemplo: Consideremos o modelo formado pelos pontos P, @, R e S, uma
reta incidente nos pontos R, (), e S e as outras trés retas incidentes no ponto P
e em cada um dos restantes pontos (fig. 1.4).

R S

P

Figura 14

O modelo ndo cumpre o axioma A3, pois existe uma reta incidente em trés
pontos.

Verificamos que os axiomas A1, A; e Az sdo independentes, logo o sistema
é independente.

Veremos a seguir, uma consequéncia dos axiomas que é o teorema que se

segue.

Teorema 1.1.3. Existem exatamente seis retas.

Demonstracdo:

Existem exatamente quatro pontos distintos P, @, R e S, de acordo com o
axioma A;. Aplicando o axioma A; construimos as seis retas PQ, PR, PS, RQ),
RS e QS (tig. 1.5).

Figura 1.5
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Suponhamos, com vista a um absurdo, que existem mais de seis retas, sendo
r uma sétima reta distinta das anteriores. A reta r tem dois pontos, de acordo
com o axioma Aj. Esses pontos s6 podem ser dois dos quatros definidos anteri-
ormente (P, ), R e S), pois ndo existem mais pontos. Suponhamos, sem perda
de generalidade, que a reta r incide no ponto P. Nesse ponto e em cada um dos
restantes pontos ja incide uma reta, e de acordo com o axioma A; a reta r tera
de ser coincidente com a reta PQ) ou PR ou PS, mas é absurdo pois a reta r é
distinta das anteriores. Assim existem exatamente seis retas. ad

Serd que existem outros modelos que satisfazem este sistema de axiomas?

Poderdo existir outros modelos que representem este sistema axiomaético,
mas todos eles sdo equivalentes no sentido da definicao seguinte.

Definigdo 1.1.4. Dois modelos o e 3 de um sistema axiomdtico sdo isomorfos se existir
uma bijecdio entre o conjunto de pontos de « e conjunto de pontos de 3 e uma bijecio
entre o conjunto de retas de o e o conjunto de retas de (3 de tal modo que sdo preservadas
todas as relacbes de incidéncia.

Se nos inspirarmos na ilustragdo da fig. 1.5 do teorema 1.1.3 encontramos
um segundo modelo para este sistema axiomético. Consideremos a seguir os
dois modelos (fig. 1.6).

C
R S
D
A_ _B P Q
Modelo 1 Modelo 2

Figura 1.6

Vamos provar que estes modelos sdo isomorfos. Comecemos por estabelecer
uma bijegdo entre os pontos de ambos modelos.

A« P
B&Q
Ce S
D+ R

Seguidamente estabeleceremos uma bijecdo entre as suas retas. A imagem
da reta AB é a reta que incide nos pontos que sdo imagem de A e de B, ou seja
areta PQ), e 0 mesmo se passa com as outras retas.

18



1.1 Geometria dos quatro pontos

AB < PQ
AC < PS
AD < PR
BC < QS
BD & QR
CD+ SR

Nestas bijegGes sdo preservadas as relagdes de incidéncia, logo os modelos
sdo isomorfos.

Apresentaremos de seguida os conceitos da dualidade.

Defini¢io 1.1.5. Chama-se dual de uma afirmagdo num sistema axiomdtico a afirmagio
que se obtém trocando os termos ponto e reta.

Definigdo 1.1.6. Dizemos que um sistema axiomdtico satisfaz o principio da dualidade
se o dual de cada afirmagdo é também uma afirmacio verdadeira.

Este sistema axiomatico nado verifica o principio da dualidade porque fa-
zendo o dual do axioma A; afirmamos que existem quatro retas, o que é falso,
pois demostrdmos no teorema 1.1.3 que existem seis retas. Mais a frente vere-
mos alguns sistemas que satisfazem este principio.

Iremos de seguida estudar o dual deste sistema axiomatico, obtendo um
sistema axiomdtico diferente a que vamos chamar geometria das quatro retas.
Como seria de esperar todas as afirmagoes feitas anteriormente sio véalidas tro-
cando as palavras ponto e reta, isto é, tomando as afirmacées duais. O teorema
1.1.7 é dual do teorema 1.1.3 e portanto como o teorema 1.1.3 é vélido na ge-
ometria dos quatro pontos, o teorema 1.1.7 é valido na geometria das quatro
retas.

Geometria das quatro retas

Axiomas:
Axioma Bq: Existem exatamente quatro retas distintas.

Axioma B;: Dadas duas retas distintas, existe exatamente um ponto em co-
mum.

Axioma B;: Em cada ponto incidem exatamente duas retas distintas.

Enunciaremos seguidamente o dual do teorema 1.1.3, que é vélido neste sis-
tema. Nao seria necessario fazer a sua demonstracdo, uma vez que ja sabemos
que o teorema é valido. Iremos apresentd-la por uma questédo de curiosidade,
para vermos como poderd ficar utilizando os axiomas anteriores. Naturalmente
serd semelhante & do teorema 1.1.3.
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Teorema 1.1.7 (Dual do teorema 1.1.3). Existem exatamente seis pontos.

Demonstragdo:

Existem exatamente quatro retas distintas r, s, t e v, de acordo com o axioma
B;. Como quaisquer duas retas tém um ponto em comum segundo o axioma
B,, podemos considerar os pontos 4, B, C, D, E e F comuns s retasre s, ret,
rev,set,sewveteuw, respetivamente. Ternos assim definidos seis pontos (fig.
1.7).

Figura 1.7

Vamos provar que ndo existem mais do que estes seis pontos. Suponhamos,
com vista a um absurdo, que existe um sétimo ponto G, distinto dos anteriores.
De acordo com o axioma B3, no ponto G incidem exatamente duas retas. Logo
G ¢é o ponto comum de duas retas definidas anteriormente, pois ndo existem
mais retas. Foram definidos os pontos comuns a cada duas retas e de acordo
com o axioma By, o ponto & tem de ser um dos pontos A ou B ou C ou D ou
E ou F'. Isto é absurdo, pois G é um ponto distinto dos anteriores. Portanto
existem exatamente seis pontos. g

1.2 Geometria dos trés pontos

Neste sistema axiomatico, a semelhanca do anterior, iniciaremos por introduzir
os axiomas e verificar a consisténcia e independéncia do sistema. Definiremos
e demonstraremos alguns resultados importantes. Contrariamente ao sistema
axiomatico anterior este sistema satisfaz o principio da dualidade.

Axiomas:

Axioma C;: Existem exatamente trés pontos distintos.

Axioma C;: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma C3: Nem todos os pontos pertencem a mesma reta.

Axioma Cy: Duas retas distintas tém no minimo um ponto em comum.

20



1.2 Geometria dos trés pontos

Provaremos a consisténcia deste sistema axiomatico, tal como fizemos na
secg¢do anterior, construindo um modelo. Consideremos o modelo cujos pontos
sdo A, B e C e as retas sdo os segmentos de reta AB, AC e BC (fig. 1.8).

B

A C

Figura 1.8: Um possivel modelo da geometria dos trés pontos

A semelhanca do que fizemos na sec¢do anterior vamos dar exemplos de
modelos que provam a independéncia dos axiomas.

Modelos que demostram a independéncia dos axiomas

Em cada um dos casos facilmente verificamos que se cumprem todos os axi-
omas com exce¢do do axioma em questdo.
Axioma C;: Existem exatamente trés pontos distintos.

Exemplo: A geometria dos quatro pontos, que vimos anteriormente, ndo
verifica este axioma, pois nesta geometria existem exatamente quatro pontos.

Axioma C;: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: Consideremos o modelo formado pelos pontos P, Q) e R e por
duas retas, uma incidente nos pontos P e R e outra nos pontos @ e R (fig. 1.9).

Figura 1.9

Este modelo ndo verifica o axioma C, porque os pontos P e () sdo distintos,
mas nao incide nenhuma reta em ambos.

Axioma C3z: Nem todos os pontos pertencem & mesma reta.

Exemplo: Este axioma néo é verificado por um modelo constituido por uma
reta incidente em trés pontos P, @ e R (fig. 1.10).

E o) &

A d

Figura 1.10
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Axioma Cg4: Duas retas distintas tém no minimo um ponto em comum.

Exemplo: O modelo constituido pelos pontos P, Q) e R e por quatro retas,
a reta r, incidente apenas no ponto R, outra reta incidente nos pontos P e R,
outra nos pontos () e R e outra nos pontos P e @) (fig. 1.11).

r R

P

Figura 1.11

Este modelo ndo verifica o axioma Cy, pois as retas r e PQ) sdo distintas e
ndo tém nenhum ponto em comum.

Mostramos que os axiomas Cy, Cz, C3 e C4 sdo independentes, logo o sistema
é independente.

Enunciaremos e demonstraremos seguidamente algumas afirmagdes que
sdo consequéncia dos axiomas.

Teorema 1.2.1. Duas retas distintas tém exatamente um ponto em comum.

Demonstragado:

Sejam r e s duas retas distintas dadas. De acordo com o axioma Cy, as re-
tas r e 5 tém no minimo um ponto em comum. Suponhamos, com vista a um
absurdo, que as retas tém dois pontos P e Q em comum (fig. 1.12).

S

NP Q. r
"

Figura 1.12

Se os pontos P e () sdo comuns as retas r e s, entdo a reta r incide nos pontos
P e eareta s incide nos pontos P e ). Assim, segundo o axioma Cy, as retas r
e 5 s30 a mesma porque dois pontos distintos pertencem exatamente a uma reta,
mas isto é impossivel pois as retas r e s sdo distintas. Portanto chegamos a uma
contradicdo, logo duas retas distintas tém exatamente um ponto em comum. O

Teorema 1.2.2. Cada reta incide exatamente em dois pontos.

Demonstragio:

Seja r uma reta qualquer. De acordo com os axiomas C; e C3 existem exata-
mente trés pontos distintos e nédo estdo todos sobre a mesma reta, logo a reta r
ndo pode ter mais de dois pontos. Suponhamos, com vista a um absurdo, que

22



1.2 Geometria dos trés pontos

a reta r tem menos de dois pontos. Isto é, ou a reta r incide em exatamente um
ponto ou ndo tem nenhum ponto. Se a reta r incide em exatamente um ponto P,
entdo segundo os axiomas C; e C3 existem outros dois pontos @ e S, distintos
do ponto P, que ndo pertencem a reta r. Aplicando o axioma C; construfmos as
retas PQ, PS e QS. Segundo o teorema 1.2.1 a reta r e a reta QS tém um ponto
em comum, ¢ ou S. Assim a reta r tem dois pontos, o ponto P e o ponto de
intersecdo da reta r com a reta S, o que é absurdo pois supusemos que tinha
exatamente um ponto. Se a reta r ndo tem nenhum ponto, entdo de acordo com
o axioma C; existem exatamente trés pontos Q, S e T distintos. Aplicando os
axiomas C; e C; construimos as retas SQ, ST e QT Segundo o teorema 1.2.1,
cada uma das retas SQ, ST, QT e a reta r tém um ponto em comum. Logo
a reta r tem pelo menos um ponto o que é absurdo, pois supusemos que ndo
tinha pontos.

Assim cada reta incide em exatamente dois pontos. a

Teorema 1.2.3. Existem exatamente trés retas.

Demonstragio:

De acordo com o axioma C; existem exatamente trés pontos P, Q@ e R. Os
trés pontos ndo pertencem & mesma reta, segundo o axioma C;. Aplicando o
axioma C; construimos as trés retas PQ, PR e QR (fig. 1.13).

P

Figura 1.13

Vamos provar que nio existem mais do que estas trés retas. Suponhamos,
com vista a absurdo, que existe uma quarta reta r. A reta r tem exatamente dois
pontos de acordo com o teorema 1.2.2. Esses pontos s6 podem ser dois dos trés
definidos anteriormente (P, @ e R), pois ndo existemn mais pontos. Suponha-
mos, sem perda de generalidade, que a reta r incide no ponto P. Nesse ponto
e em cada um dos restantes pontos ja incide uma reta, logo a reta r teré de ser
coincidente com a reta PQ ou PR, mas é absurdo pois a reta r é distinta das
anteriores. Assim existem exatamente trés retas. O

Referimos no inicio, que este sisterna axiomético contrariamente ao anterior
satisfaz o principio da dualidade, pois trocando os termos ponto e reta vamos
obter afirmagdes que sdo verdadeiras neste sistema. Podemos verificar que o
teorema 1.2.3 é o dual do axioma C; e o teorema 1.2.1 é o dual do axioma C,.
Iremos seguidamente escrever e demonstrar as afirmacdes duais dos axiomas

C3€C1.
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Teorema 1.2.4 (Dual do axioma C3). Nem todas as retas incidem no mesmo ponto.

Demonstragdo:

Existem exatamente trés pontos P, ) e R, de acordo com o axioma C;. Apli-
cando o axioma C,, dados dois pontos distintos, existe exatamente uma reta
incidente em ambos, podemos construir as retas PQ}, PR e QR. Nao existem
mais retas de acordo com o teorema 1.2.3. As trés retas PQ), PR e QR nédo tém
nenhum ponto em comum, portanto ndo incidem no mesmo ponto. d

Teorema 1.2.5 (Dual do axioma Cy4). Dados dois pontos distintos, existe no minimo
uma reta incidente em ambos.

Demonstragio:

E uma consequéncia direta do axioma C;. a

1.3 Geometria dos sete pontos

Esta é uma geometria com mais complexidade que as anteriores. Um facto curi-
0so desta axiomatica é que se num modelo retirar uma reta qualquer e os respe-
tivos pontos, vamos obter outro modelo que satisfaz a axiomatica da geometria
dos quatro pontos. Introduziremos esta geometria com os axiomas:

Axiomas:

Axioma D;: Se P e Q) sdo pontos distintos, existe no minimo uma reta contendo
Peq.

Axioma D;: Se P e @ sdo pontos distintos, ndo existe mais que uma reta con-
tendo P e Q.

Axioma Dj3: Quaisquer duas retas tém no minimo um ponto em comum.

Axioma Dy: Existe no minimo uma reta.

Axioma Ds: Cada reta tem no minimo trés pontos.

Axioma Dg: Nem todos os pontos pertencem a mesma reta.

Axioma D7: Nenhuma reta contém mais de trés pontos.

A semelhanga dos sistemas axiomaticos anteriores iremos dar um exemplo

de um possivel modelo para provar a consisténcia deste sistema axiomatico.
Consideremos o modelo a seguir em que os pontos sdo as letras P, Q, R, S, T,

U e V, as retas sdo os segmentos de reta PQ, PS, PV, RQ), SQ e ST e existe
uma reta que esta representada por uma curva que passa pelos pontos R, T" e
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1.3 Geometria dos sete pontos

Q

Figura 1.14: Um possivel modelo da geometria dos sete pontos

V. Um ponto incide numa reta se pertence a um segmento de reta. Este modelo
serd construido pormenorizadamente mais a frente no teorema 1.3.7 (fig. 1.14).

Tal como nas secgdes anteriores iremos dar exemplos de modelos que de-
monstram a independéncia dos axiomas.

Modelos que demostram a independéncia dos axiomas

Para cada exemplo facilmente se verifica que se cumprem todos os axiomas
com exce¢ao do axioma em questdo.

Axioma D;: Se P e () sdo pontos distintos, existe no minimo uma reta con-
tendo P e Q.

Consideremos o exemplo do modelo constituido pelos pontos P, Q, R, S,
T e V e por quatro retas, que estdo representadas como colunas na seguinte
tabela.

nO Y
SN
<0
N X W®

Podemos representar este modelo (fig. 1.15).

Figura 1.15

Este exemplo néo verifica o axioma D, pois ndo existe nenhuma reta inci-
dente nos pontos P e R.

Axioma D»: Se P e @) sdo pontos distintos, ndo existe mais que uma reta
contendo P e Q.
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Vejamos o exemplo de um tetraedro de vértices P, ), Re S, no qual as faces
representam retas. Tal como no exemplo anterior voltamos a utilizar uma tabela
em que as colunas de pontos representam retas.

o O Y
HO v
N3 v
N DO

Assim representamos o tetraedro na figura 1.16.

Figura 1.16

Existem duas retas (faces do tetraedro) distintas que contém os pontos P e
@, logo ndo verifica o axioma D,. Tal como foi referido na introdugdo os ter-
mos ponto e reta sdo termos ndo definidos, logo podem ser representados por
diferentes objetos. Este é um bom exemplo disso, uma vez que as retas sdo
representadas pelas faces do tetraedro.

Axioma Dj3: Quaisquer duas retas tém no minimo um ponto em comum.

Exemplo: Para construir o modelo seguinte consideramos nove pontos

(A1, Ay, ..., Ag) e as retas na coluna da tabela.

Al A1 A A A A A A3 A3 A3 Ay A
Ay Ay As A A 5 Ay A6 Ay A5 A6 A5 Ag
As A Ay Ay Ag Ay Ay Ay A Ay Ag Ay

Podemos verificar que a reta formada pelos pontos A;, A; e A3 e a reta for-
mada pelos pontos A4, As e Ag ndo tém nenhum ponto em comum, logo o axi-
oma Ds ndo se verifica.

Axioma Dy: Existe no minimo uma reta.
Exemplo: Um modelo com um tinico ponto nio verifica este axioma.
Axioma Ds: Cada reta tem no minimo trés pontos.

Exemplo: Consideremos um tridngulo de vértices P, Q e R em que os vérti-
ces estdo no papel de pontos e os lados no papel de retas (fig. 1.17).

Q

Figura 1.17
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1.3 Geometria dos sete pontos

Cada reta (lado do tridngulo) tem exatamente dois pontos, assim o axioma
D5 é néo verificado.

Axioma Dg: Nem todos os pontos pertencem a mesma reta.

Exemplo: O modelo formado por uma tnica reta contendo trés pontos P, Q
e R ndo verifica este axioma pois todos os pontos pertencem a mesma reta (fig.
1.18).

i ne, &

Figura 1.18

Axioma D7: Nenhuma reta contém mais de trés pontos.

O exemplo de um plano projetivo de ordem trés no qual cada reta tem quatro
pontos ndo verifica este postulado. Este exemplo sera abordado no capitulo
seguinte.

Mostrdmos que os axiomas Dy, D,, D3, Dy, Ds, Dg e D7 sdo independentes,
logo o sistema é independente.

Na secgdo referente a geometria dos quatro pontos, vimos que este sistema
axiomatico ndo satisfaz o principio da dualidade, pois ao fazermos o dual de
alguns axiomas obtemos afirmagdes que nao sdo verdadeiras. Vamos ver neste
sistema axiomatico que todas as afirmacoes duais dos axiomas podem ser de-
monstradas. Os teoremas que se seguem sdo os duais dos axiomas definidos
anteriormente, a excecdo dos axiomas D; e D3 que sdo duais um do outro.

Teorema 1.3.1 (Dual do axioma D5). Duas retas distintas tém um tinico ponto em
comum.

Demonstragido:

Duas retas quaisquer tém no minimo um ponto de acordo com o axioma Dj.
Sejam r e s duas retas distintas e P um ponto comum a ambas. Suponhamos,
com vista a um absurdo que as retas r e s tém dois pontos distintos em comum,
o ponto P e o ponto R (fig. 1.19).

S\P R_/ r

Figura 1.19

De acordo com o axioma D,, ndo existe mais que uma reta contendo P e R,
logo as retas r e s sdo a mesma, 0 que é absurdo pois foi suposto que as retas r
e s sdo distintas. Assim as duas retas tém um tnico ponto em comum. O

Teorema 1.3.2 (Dual do axioma D,). Existe no minimo um ponto.
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Demonstracio:

Segundo o axioma Dy, existe no minimo uma reta, mas cada reta contém no
minimo trés pontos de acordo com o axioma Ds. Entdo no minimo existe um
ponto. a

Teorema 1.3.3 (Dual do axioma Ds). Num ponto incidem no minimo trés retas.

Demonstragdo:

Seja P um ponto dado. No minimo existe uma reta r, pelo axioma Dy. Po-
demos considerar dois casos:

1. o ponto P pertence a retar;

2. o ponto P ndo pertence a reta r.

Caso 1: Se o ponto P pertence a reta r, entdo segundo os axiomas D5 e Dy,
para além do ponto P existem mais dois pontos R e S na reta r. De acordo
com o axioma Dg, existe um ponto Q) que nio pertence a reta r. Aplicando os
axiomas D; e D, construimos as retas PQ, RQ e SQ (fig. 1.20).

P R S r
Q
Figura 1.20

Mas cada uma das retas anteriores tem trés pontos, pelos axiomas Ds e D5.
Sejam T, U e V pontos pertencentes respetivamente as retas PQ, RQ e SQ,
distintos dos pontos jd@ mencionados. De acordo com os axiomas D; e D2, pelos
pontos P e U passa exatamente uma reta pois sdo distintos e ndo colineares.
Logo pelo ponto P passam as retas PD, r e PU, ou seja trés retas.

Caso 2: como o ponto P nao pertence a reta r, entdo de acordo com o0s axio-
mas Ds e Dy a reta r tem exatamente trés pontos ), Re S. Aplicando os axiomas
D; e D; podemos definir as retas PQ, PR e PS incidindo assim no ponto P trés
retas. O

Teorema 1.3.4 (Dual do axioma Dg). Nem todas as retas passam pelo mesmo ponto.

Demonstragdo:

Seja @ um ponto dado. De acordo com o axioma D, existe no minimo uma
reta r. Podemos ter dois casos:

1. o ponto (J ndo pertence areta r

2. o ponto @ pertence aretar.
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1.3 Geometria dos sete pontos

Caso 1: Se o ponto @ nao pertence a reta r, entdo segundo os axiomas Ds
e D7, existem exatamente trés pontos P, R e § na reta r. De acordo com os
axiomas D; e D, definimos as retas PQ, RQ e SQ@ (fig. 1.21).

P IR S r
Q
Figura 1.21

Portanto existe uma reta r que ndo passa pelo ponto Q.

Caso 2: como o ponto () pertencer a reta r, segundo os axiomas D5 e D7,
para além do ponto Q existem mais dois pontos R e S na reta r. De acordo com
o axioma Dg, existe um ponto T ndo pertencente a reta r. Pelos axiomas D; e
D, definimos as retas TQ, RT e ST (fig. 1.22).

R S r

T
Figura 1.22

Verificamos que existe uma reta, por exemplo, RT que nao passa pelo ponto

Q. 0

Teorema 1.3.5 (Dual do Axioma Dy). Ndo passam mais de trés retas pelo mesmo
ponto.

Demonstragio:

Seja dado um ponto P. De acordo com o teorema 1.3.3 no ponto P incidem
no minimo trés retas r, s e ¢ distintas. Suponhamos que no ponto P incide uma
quarta reta u diferente das anteriores. Pelo teorema 1.3.4, nem todas as retas
passam pelo ponto P. Seja v uma reta que nao passa pelo ponto P. Como as
quatro retas que passam por P sdo distintas da reta v, entdo pelo teorema 1.3.1
tém um ponto em comum com areta v. Sejam A, B, C e D os pontos em comum
das retas r, s, t e u e da reta v respetivamente (fig. 1.23).

Os pontos sdo distintos porque as retas r, s, t e « ja tém um ponto em comum
e ndo podem ter outro como consequéncia do teorema 1.3.1. Assim a reta v tem
quatro pontos o que contradiz o axioma D7. Portanto ndo passam mais de trés
retas pelo mesmo ponto. O

Verificimos que todas as afirmacoes duais dos axiomas sdo demonstréveis,
logo este sistema axiomatico satisfaz o principio da dualidade (defini¢do 1.1.6).
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Figura 1.23

Teorema 1.3.6. Esta geometria contém exatamente sete pontos.

Demonstragdo:

De acordo com o axioma Dy, existe no minimo uma reta r. Esta reta contém
exatamente trés pontos P, R e S distintos, pelos axiomas Ds e D7. De acordo
com o axioma D¢ existe um ponto () ndo pertencente a reta r. Aplicando os
axiomas D; e D, construimos as retas PQ, RQ e SQ. Como cada uma das retas
anteriores tem trés pontos, pelos axiomas Ds e Dy, consideremos os pontos T,
U e V pertencentes, respetivamente, as retas PQ, R(Q) e SQ. Definimos sete
pontos, vamos provar que ndo existem mais pontos. Suponhamos, com vista a
um absurdo, que existe um oitavo ponto K diferente dos anteriores. Como K e
@) sdo pontos distintos, pelos axiomas D; e D,, existe exatamente uma reta K@)
incidente em ambos. No ponto @ incidem quatro retas, PQ, RQ, SQ e KQ) o
que contradiz o teorema 1.3.5. Portanto existem exatamente sete pontos nesta
geometria.

a

Teorema 1.3.7 (Dual do teorema Tg). Esta geometria contém exatamente sete retas.

Demonstragdo:

Na demonstragdo do teorema 1.3.6 provamos que existem exatamente sete
pontos. Comecemos tendo por base a demostracdo do teorema 1.3.6, na qual
definimos os pontos P, R, S,Q, T, U e V easretasr, PQ, RQ, SQ com o objetivo
de provar que existem exatamente sete retas.

De acordo com os teoremas 1.3.3 e 1.3.5 por cada ponto passam exatamente
trés retas. Pelo ponto ) passam as retas PQ), RQ e SQ. Pelo ponto P passam
as retas r e P(), falta definir uma terceira reta. Pelos pontos P e U passa exata-
mente uma reta e pelos pontos P e V também passa exatamente uma reta, de
acordo com os axiomas D; e D,. Estas retas ndo podem ser distintas pois pelo
ponto P s6 passam trés retas, segundo o teorema 1.3.5. Definiu-se assim a reta
PUYV (fig. 1.24). Por processo andlogo define-se as retas SUT e RTV. Defini-
mos as sete retas PQ, RQ, SQ, r, PUV, SUT e RTV (fig. 1.25). Provaremos
seguidamente que ndo existem mais retas. Suponhamos, com vista a um ab-
surdo que existe uma oitava reta, m. De acordo com os axiomas Ds e D7 a reta
m tem exatamente trés pontos, N, O e K. A reta m ndo pode conter nenhum
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1.3 Geometria dos sete pontos

dos outros pontos, pois em cada um deles jd passam trés retas. Definiu-se nove
pontos P, Re S,Q,V,U, T, N, O e K o que ndo pode ser, pois contradiz o
teorema 1.3.6. Assim esta geometria s6 tem sete retas.

3\ P R| S/ r

Figura 1.25

O

Um aspeto interessante desta axiomatica é o facto de que ao retirar uma reta
qualquer e os respetivos pontos a um modelo da geometria dos sete pontos,
vamos obter outro modelo que satisfaz a axiomatica da geometria dos quatro
pontos, secgdo (1.1). Observemos na figura 1.26.

Q
Modelo 2

Figura 1.26

Por exemplo, se no modelo 1, retirarmos a reta RT'V e os respetivos pontos
vamos obter o modelo 2, modelo este que satisfaz a axiomética da geometria
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dos quatro pontos e como tal é isomorfo aos modelos apresentados na secgdo
1.1. '

1.4 Geometria dos nove pontos e doze retas

Esta geometria, a semelhanca das anteriores, serd introduzida por axiomas e
a partir destes enunciaremos e demonstraremos alguns resultados. Finalizare-
mos enunciando um teorema cldssico atribuido a Papo de Alexandria. Para tal
necessitdmos de adaptar as defini¢des de poligono e lado oposto de um hexa-
gono que sabemos da geometria euclidiana a geometria finita.

Os axiomas para esta geometria sdo:

Axioma E;: Se P e () sdo pontos distintos, existe uma reta contendo os pontos
PeQ.

Axioma E;: Se P e @ sdo pontos distintos, ndo existe mais do que uma reta
contendo Pe Q.

Axioma Ej: Dada uma reta r que ndo contém um ponto P, existe uma reta
contendo o ponto P e ndo contendo nenhum ponto da reta r.

Axioma E4: Dada uma reta r que ndo contém um ponto P, ndo existe mais que
uma reta contendo o ponto P e ndo contendo nenhum ponto da reta r.

Axioma E5: Cada reta tem no minimo trés pontos.
Axioma Eg: Nem todos os pontos pertencem a mesma reta.
Axioma E7: Existe no minimo uma reta.

Axioma Eg: Nenhuma reta contém mais de trés pontos.

A semelhanca do que foi feito nos sistemas axiométicos anteriores iremos
dar um exemplo de um possivel modelo para mostrar a consisténcia deste sis-
tema axiomatico. Este modelo serd construido pormenorizadamente mais a
frente na demonstragio do teorema 1.4.4. Consideremos o modelo em que os
pontos sdo as letras K, P, Q, R, S, T, V, W e Z, as retas sao os segmentos de
reta RQ, RT, RV, PS5, TQ, QV, KZ e TV e existem retas que estio representa-
das por curvas que passam pelo terno de pontos (R, Z,5), (P, K,V), (P,Q, Z)
e (K, T, S) representados na figura 1.27.
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1.4 Geometria dos nove pontos e doze retas

Figura 1.27

Modelos que demostram a independéncia dos axiomas

Tal como fizemos nos sistemas axiométicos anteriores iremos dar um exem-
plo de modelo que demonstra a independéncia de cada axioma e facilmente se
verifica que se cumprem todos os axiomas com exce¢do do axioma em questao.

Axioma E;: Se P e @ sdo pontos distintos, existe uma reta contendo os pon-
tos Pe Q.

Exemplo: O modelo composto pelos pontos P, @, R, S, T e V e apenas pelas
duas retas PQ.S e RTV nio verifica o axioma E;.

Axioma Ep: Se P e (Q sdo pontos distintos, ndo existe mais que uma reta
contendo Pe Q.

Exemplo: O modelo constituido por seis pontos P, Q, R, S, T e U e pelas
vinte retas seguintes:

PSR, PQS, PQT, PQU, PRS, PRT, PRU, PST, PSU, PTU, QRS, QRT,
QRU, QRT,QSU,QTU, RST, RSU, RTU e STU.

Este modelo ndo verifica o axioma E,, pois, por exemplo, existe mais do que
uma reta contendo os pontos P e Q.

Axioma E;: Dada uma reta r que ndo contém um ponto P, existe uma reta
3 P
que contém o ponto P e ndo contendo nenhum ponto da reta r.

Exemplo: A geometria dos sete pontos ndo verifica este axioma, pois duas
retas distintas tém um ponto em comum.

Axioma E4: Dada uma reta r que ndo contém um ponto P, nao existe mais
que uma reta contendo o ponto P e ndo contendo nenhum ponto da reta r.

Exemplo: Consideremos o modelo formado pelos pontos F, H, K, M, P, Q,
R,S,T,U,V,W, X,Y e Z e pelas trinta e cinco retas seguintes.

PST, PRZ, PHK, PMQ, PWY, PFV,PUX, QTU, QSW,QKV,QXZ,
QHY,QFR,RUV,RHS,RTX, RKW,RMY,SMX,SVY,SKU,SFZ,TFK,
TYZ,TMV, THW,UWZ, FUY, UHM, VWX, HVZ, KXY, KMZ, FMW,
FHX.
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Consideremos a reta PST e o ponto () que ndo pertence a esta reta. No ponto
@ incidem as retas MQR e QX F que sdo paralelas a PST, logo o modelo ndo
verifica o axioma Ey4.

Axioma E5: Cada reta tem no minimo trés pontos.

Exemplo: Um quadrangulo completo nédo verifica este axioma, pois cada
reta s6 tem dois pontos.
Retas do quadrangulo: (PR), (PS), (PQ), (RS), (RQ), (5Q).

Axioma Eg: Nem todos os pontos pertencem a mesma reta.

Exemplo: Um modelo composto s6 por trés pontos e uma reta incidente em
todos cles ndo verifica o axioma Eg, pois ndo existe um ponto exterior a uma
reta. (fig. 1.28).

&L K, Pt

Figura 1.28

Axioma E;: Existe no minimo uma reta.

Exemplo: Um modelo em que s6 existe um tinico ponto néo verifica este
axioma pois nio existem retas.

Axioma Eg: Nenhuma reta contém mais de trés pontos.

Exemplo: Geometria euclidiana plana, na qual cada reta tem infinitos pon-
tos ndo verifica este axioma.

Verificdmos que os axiomas E;, E;, E3, E4, Es, Eg, E7 e Eg sdo independentes,
logo o sistema € independente.

Esta geometria nao satisfaz o principio da dualidade porque, por exemplo,
por cada dois pontos distintos passa sempre uma reta, mas duas retas distintas
podem ndo ter um ponto em comum.

Vamos deduzir alguns resultados a partir dos axiomas.

Teorema 1.4.1. Existem exatamente nove pontos.

Demonstragdo:

Existe no minimo uma reta r, de acordo com o axioma E;. A reta r tem
exatamente trés pontos R, P e T distintos, pelos axiomas Es e Eg. Segundo o
axioma Eg existe um ponto () que nao pertence a reta r. Aplicando o axioma E3
existe uma reta s que contém o ponto @ e ndo contém nenhum ponto da reta r.
A reta s tem exatamente trés pontos, de acordo com os axiomas Es e Eg, o ponto
@ e dois outros pontos, S e V (fig. 1.29).

Por dois pontos distintos passa uma reta, de acordo com os axiomas E; e
E;, em particular, podemos definir a reta RQ). A reta RQ tem trés pontos, de
acordo com os axiomas Es e Eg, ao terceiro ponto desta reta podemos chamar
K. Também podemos considerar as retas P.S e PV, facilmente verificamos se-
rem distintas. No maximo uma delas incide no ponto K. Suponhamos, sem
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1.4 Geometria dos nove pontos e doze retas

R P T r

— e —

S V s

Figura 1.29

perda de generalidade, que a reta PS ndo incide no ponto K, portanto existe
um terceiro ponto W nesta reta (fig. 1.30).

R P T r
GDK lDW

Q S S
Figura 1.30

De acordo com o axioma Ej existe uma reta j que incide no ponto T e é pa-
ralela a reta RQ). A reta j interseta a reta s, de acordo com o axioma E4, pois
ja existe uma reta que passa pelo ponto T paralela a reta s. A reta j ndo pode
incidir no ponto §, pois as retas RQ) e PS sdo paralelas e se assim fosse existi-
riam duas retas paralelas a RQ) (j e PS) incidentes no ponto .S, contrariando o
axioma E4. Portanto a reta j interseta a reta s no ponto V, e podemos designé-la
por TV. A reta TV é paralela a reta P.S, pois se intersetasse a reta P.S no ponto
W, existiriam duas retas, PS e TV, paralelas a R(Q) passando no ponto W, o
que contraria o axioma E4. De acordo com os axiomas Es e Eg a reta TV tem
um terceiro ponto Z (fig. 1.31).

R P IT r
IDK [ ] ®
Q S (V s
Figura 1.31

Verificamos que existem nove pontos. Vamos provar a seguir que ndo exis-
tem mais. Suponhamos, com vista a um absurdo, que existem pelo menos dez
pontos. Seja H um décimo ponto, distinto dos anteriores. De acordo com os axi-
omas E; e E; podemos definir a reta HQ. Esta reta s6 tem mais um ponto, por
isso s6 pode intersetar no maximo uma das retas TV ou PS. Se ndo intersetar
a reta PS incidem no ponto @) duas retas paralelas & reta PS o que contraria o
axioma E4. Se ndo intersetar a reta TV chegamos a igual contradi¢do. Portanto
existem exatamente nove pontos. a

Teorema 1.4.2. Cada reta admite exatamente duas retas paralelas.
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Demonstragio:

Seja r uma reta dada. Pelos axiomas Es e Eg, a reta r contém exatamente trés
pontos P, R e S distintos. De acordo com o axioma E¢ existe um ponto @ que
néo pertence a reta r e em consequéncia, pelos axiomas Ej3 e E4, existe uma reta
t que contém o ponto () e ndo contém nenhum ponto da reta r. A reta ¢ contém
o ponto e mais dois, T e V, segundo os axiomas Es e Eg (fig. 1.32).

P R S r

—————o

Q T VvV i

Figura 1.32

Cada dois pontos distintos pertencem exatamente a uma reta, de acordo
com os axiomas E; e E, logo por exemplo podemos definir a reta PQ). Esta reta
tem exatamente trés pontos, (), P e um outro ponto W. A reta r ndo contém
o ponto W, entdo pelos axiomas E; e E4, existe exatamente uma reta m que
passa por W e é paralela a r. Esta reta é diferente da reta ¢, pois o ponto W nédo
pertence a reta ¢ (fig. 1.33).
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Figura 1.33

Verificamos que existem duas retas paralelas a reta r, seguidamente prova-
remos que ndo existe mais nenhuma. Suponhamos, com vista a um absurdo,
que existem trés retas paralelas a reta . Seja u uma terceira reta paralela a reta
r. De acordo com os axiomas Es e Eg, a reta u tem trés pontos. Esta tem, no
méaximo, um ponto em comum com as retas m e t, logo existe pelo menos um
ponto ndo pertencente as retas m, r e t. Assim existe um décimo ponto, o que
contraria o teorema anterior. Concluimos entdo que a reta r tem exatamente
duas retas paralelas a si. (]

Teorema 1.4.3. Duas retas paralelas a uma terceira reta sdo paralelas entre si.

Demonstracdo:

Sejam dadas as retas r, s e t distintas, tais que as retas r e ¢t sdo ambas para-
lelas a reta s. Suponhamos, com vista a um absurdo, que as retas r e t tém um
ponto P em comum. Pelo ponto P passam duas retas paralelas a reta s, o que
contraria o axioma E,4. Assim as retas r, 5 e t sdo paralelas entre si. O

Teorema 1.4.4. Existem exatamente doze retas.
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1.4 Geometria dos nove pontos e doze retas

Demonstragdo:

No minimo existe uma reta r, pelo axioma E;. De acordo com o teorema
1.4.2, existem exatamente duas retas s e t paralelas a reta r. Segundo os axiomas
Es e Eg, cada uma das retas anteriores tem trés pontos distintos. Consideremos
os pontos R, P e T pertencentes a reta r, os pontos (), S e V pertencentes a reta
s e os pontos K, W e Z pertencentes a reta t. Observemos que, de acordo com
o teorema 1.4.1 ndo existem mais pontos para além destes(fig. 1.34).

R P T r
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Figura 1.34

Os axiomas E; e E; permitem-nos definir a reta RQ. Nem o ponto P nem
o ponto T podem incidir na reta RQ pois caso contrario pelos axiomas E; e E;,
as retas r e R() seriam a mesma. Analogamente nem o ponto S nem o ponto
V incidem em RQ. Como a reta R() tem um terceiro ponto, sabemos que esta
incide num dos pontos K, W ou Z. Sem perda de generalidade supomos que o
ponto K incide na reta RQ. Segundo os axiomas Ej e E4, no ponto P incide uma
reta m paralela a reta RQ. O ponto T ndo pode pertencer a reta m, senéo as retas
m e r seriam a mesma pelos axiomas E; e E;, logo no ponto T' tem de incidir
outra reta j paralelaa RQ). A reta m tem trés pontos e ndo existem mais pontos
para além dos nove ja referidos, como vimos, logo a reta m tem de intersetar
as retas t e s. Portanto a reta m incide no ponto W ou Z da reta ¢ e no ponto S
ou V da reta s. Sem perda de generalidade supomos que a reta m incide nos
pontos W e S. As retas m e j sdo paralelas a reta RQ, logo pelo teorema 1.4.3
sdo paralelas entre si. Assim a reta j tem de incidir nos pontos Z e V. Por um
processo andlogo podemos construir as retas RZS, RWV, PKV,PZQ,TKS e
TWQ. Temos definidas as doze retas: r, s, t, RKQ, PWS, TZV, RWV, RZS,
PKV,PZQ,TKSeTWQ (fig. 1.35).

Vamos provar que ndo existem mais retas. Suponhamos, com vista a um
absurdo, que existem, no minimo, treze retas, sendo i a décima terceira. De
acordo com os axiomas Es e Eg, a reta ¢ tem trés pontos. Como s6 existem nove
pontos de acordo com o teorema 1.4.1, entdo os trés pontos da reta ¢ sdo trés
dos pontos anteriormente definidos. Suponthamos, sem perda de generalidade,
que a reta i incide no ponto V. Como o ponto V' é colinear com cada um dos
restantes pontos ja definidos R, P, T, @, S, K, W e Z, entdo a reta 7 é uma das
retas definidas anteriormente. Mas nds supusemos que a reta i é diferente das
anteriores. Chegamos a uma contradi¢do, portanto existem exatamente doze
retas. O

No préximo teorema vamos trabalhar com um poligono. No entanto, nas
geometrias finitas ndo é possivel definir um segmento de reta (este é um con-
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ceito da geometria euclidiana que néo faz sentido neste ambiente) e portanto
a definicdo usual de poligono nao pode ser aqui utilizada. Como queremos
definir poligono, vamos ter de adaptar a defini¢do as geometrias finitas.

Definigdo 1.4.5. Chama-se poligono a uma sequéncia de retas A1 Ay, ArAs, A3As,
o AnAremque Ay, Ay, A3, Ay, ..., A, sdo n pontos distintos. Aos pontos A;, A,
As, A4, ..., Ay vamos chamar vértices do poligono e ds retas Ay Az, Ax Az, A3As,.. .,
A, A o0s lados do poligono.

Vejamos dois exemplos de poligonos que tém por base a defini¢do anterior
(fig. 1.36).

B

B
quadrilatero ABCD pentdgono ABCDE

Figura 1.36

Como no préximo teorema vamos precisar do conceito de lado oposto de
um hexdgono e na defini¢do anterior nada foi referido em relagao a esse con-
ceito, vamos a seguir definir lado oposto de um hexagono.

Definigdo 1.4.6. Num hexdgono o lado 1, é oposto ao lado 1, se o lado 11 ndo for adja-
cente ao lado I nem adjacente a nenhum lado que seja adjacente a este iltimo.

Vamos enunciar um teorema classico atribuido a Papo de Alexandria. No
capitulo 2 iremos novamente encontrar este teorema, mas numa axiomatica di-
ferente.
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1.4 Geometria dos nove pontos e doze retas

Teorema 1.4.7 (Teorema de Papo). Sejam r e s duas retas paralelas e sejam R, P e
T os trés pontosdaretar e Q, S eV os trés pontos de s. Se os lados opostos do hexdgono
RSTQPYV se intersetarem entdo os trés pontos de intersegdo sdo colineares.

Demonstragio:

Os lados do hexagono RSTQPV sao as retas RS, ST, TQ, QP, PV e VR
(fig. 1.37). O lado oposto ao lado RS é QP, o lado oposto ao lado RV é TQ, o
lado oposto aolado PV é T'S. Suponhamos que a reta RS interseta a reta PQ no
ponto K, a reta RV interseta a reta T'Q) no ponto W e a reta PV interseta a reta
T'S no ponto Z (ver fig. 1.38). Segundo o teorema 1.4.2 a reta r tem exatamente
duas retas paralelas, uma é a reta s e a outra reta podemos chamar-lhe ¢. Esta
reta ¢ tem exatamente trés pontos de acordo com os axiomas Es e Eg. Esses
pontos s6 poderdo ser K, W e Z, pois o nosso modelo ja tem exatamente nove
pontos definidos e ndo poderd ter mais segundo o teorema 1.4.1 e os outros seis
pontos R, P,T,(Q, S e V incidem ou na reta r ou na reta s. Assim a reta t incide
nos pontos K, W e Z. Portanto os trés pontos K, W e Z de intersecdo dos lados
opostos sdo colineares (ver fig. 1.39). t

S V s
AN
Figura 1.37

s
y

Figura 1.38
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Capitulo 2

Duas Configuracdes da
Geometria Classica

2.1 Configuracao de Desargues

Gerard Desargues, que viveu entre 21 de fevereiro de 1591 e setembro de 1661,
foi um matematico e engenheiro francés. E considerado um dos fundadores
da geometria projetiva.! A sua principal obra foi “Brouillon project d’une at-
teinte aux evenemens des rencontres du Cone avec un Plan” em 1639. Um dos
seus trabalhos mais conhecidos € o resultado a que hoje chamamos Teorema de
Desargues.

Vamos nesta secgdo trabalhar a axiomaética da Configuragdo de Desargues.
Este sistema axiomatico, tal como foi dito na introdugéo, apresenta uma relagio
interessante entre pontos e retas que é a de polaridade. E com a explicagdo
desta relagdo que iniciaremos esta sec¢do. Finalizaremos com o teorema que da
o nome a esta axiomética: Teorema de Desargues.

Definigdo 2.1.1. Sejam m uma reta e M um ponto. Se nio existe nenhuma reta ¢ qual
pertenga o ponto M e que tenha pontos em comum com m, dizemos que a reta m é polar
de M e o ponto M é polo de m.
Axiomas:

Axioma F;: No minimo existe um ponto.

Axioma F,: Cada ponto tem no minimo uma polar.

Axioma F3: Cada reta tem no maximo um pélo.

Axioma F4: Dois pontos distintos estdo no méaximo sobre uma reta.

1Uma bibliografia de Desargues pode ser consultada em
http:/fwww-history.mcs.st-andrews.ac.uk/history/Biographies/Desargues.html
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Axioma F5: Existem exatamente trés pontos distintos em cada reta.

Axioma Fg: Se uma reta m nédo contém um ponto P, entdo existe um ponto
comum a m e a qualquer polar de P.

Teorema 2.1.2. Se P pertence a uma reta polar de Q, entio qualquer polar de P contém

Q.

Demonstracio:

Seja ¢ uma polar de Q. Por defini¢do () ndo pertence a g. Seja P um ponto
de g. Pelo axioma Fs, existem exatamente trés pontos distintos em ¢, um deles
é P e aos outros dois chamaremos R e S (fig. 2.1).

P R S8

— o o

q
Q
.

Figura 2.1

De acordo com o axioma F, existe no minimo uma polar p de P. Suponha-
mos, com vista a um absurdo, que () ndo pertence a p. Se () ndo pertence a p,
pelo axioma Fg, p e ¢ tém um ponto em comum, que pode ser R, S ou P, pois
estes sdo os pontos de g. Mas por defini¢do P nio pertence a p. Se R ou S per-
tencem a p entdo existe um ponto em comum entre uma reta que contém P e
uma sua polar, o que contradiz a defini¢do de pélo e polar. Assim () pertence a
P. J

Teorema 2.1.3. Cada ponto tem exatamente uma polar.

Demonstragdo: Um ponto P dado tem no minimo uma polar, de acordo com

axioma F,. Suponhamos, com vista a um absurdo, que P tem duas polares p
e p1. De acordo com o axioma Fs, existem trés pontos distintos em cada reta,
em particular, a reta p; tem trés pontos. Segundo o axioma F;, no maximo um
destes pontos pode pertencer a p. Consideremos um ponto T pertencente a reta
p1 e ndo a reta p. Existe uma reta ¢ polar de T, segundo o axioma F,. Como o
ponto T pertence a uma polar de P, pelo teorema 2.1.2, o ponto P pertence a
reta t. Como a reta p ndo contém o ponto T, entdo existe um ponto em comum
as retas p e t, pelo axioma F (fig. 2.2).

A reta t contém o ponto P e as retas ¢ € p tém um ponto em comum, o que
contradiz a definicdo de polar. Assim o ponto P ndo pode ter mais de uma
polar. O
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2.1 Configuracdo de Desargues

Figura 2.2

Teorema 2.1.4. Cada reta tem exatamente um pélo.

Demonstracdo:

Seja dada uma reta p. Como, pelo axioma F3, a reta p tem no maximo um
polo, basta-nos verificar a existéncia de um pélo de p. De acordo com o axioma
Fs, existem exatamente trés pontos R, S e T distintos em p. Os pontos Re S tém
exatamente uma polar, pelo teorema 2.1.3. Sejam r e s as polares dos pontos R
e S, respetivamente. A reta r ndo contém o ponto S, porque S pertence a reta
p e se S pertencesse a reta r, entdo as retas p e r teriam um ponto em comum o
que contraria a defini¢do de polo e polar. Portanto, pelo axioma Fs, existe um
ponto P comum as retas r e s {fig. 2.3).

eR eS =T p

P

s r
Figura 2.3

Segundo o teorema 2.1.3, o ponto P tem exatamente uma polar. Como o

ponto P pertence as retas r e s, de acordo com o teorema 2.1.2, os pontos Re S

pertencem a polar de P.
Assim p é a polar de P e P o pélo de p. O

Verificaremos, a seguir, que a Configuracido de Desargues também ¢é um sis-
tema axiomaético que satisfaz o principio da dualidade.

Teorema 2.1.5 (Dual do axioma F;). No minimo existe uma reta.

Demonstragdo:

Pelo axioma F; existe um ponto P. Aplicando teorema 2.1.3, o ponto P tem
exatamente uma polar, portanto existe pelo menos uma reta. O

Teorema 2.1.6 (Dual do axioma F,). Cada reta tem no minimo um pélo.

Demonstragio:
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Pelo teorema 2.1.4, cada reta tem exatamente um pdélo, logo verifica-se a
existéncia de pelo menos um pdlo. a

Teorema 2.1.7 (Dual do axioma F3). Cada ponto tem no mdximo uma polar.

Demonstragido:

Cada ponto tem exatamente uma polar, de acordo com o teorema 2.1.4, logo
cada ponto tem no méximo uma polar. O

Teorema 2.1.8 (Dual do axioma Fy). Duas retas distintas tém no mdximo um ponto
em comum.

Demonstragio:

Sejam s e r duas retas distintas. Suponhamos, com vista a um absurdo,
existirem dois pontos P e ) incidentes nas retas s e r. Aplicando o axioma Fy,
P e () estdo no méximo sobre uma reta, o que contraria a hipétese de incidirem
nas retas s e 7. Assim duas retas distintas tém no maximo um ponto em comum.
a

Teorema 2.1.9 (Dual do axioma Fs). Por cada ponto passam exatamente trés retas
distintas.

Demonstragio:

Dado um ponto P, de acordo com o teorema 2.1.3, P tem exatamente uma
polar p. Tendo em atengdo o axioma Fs, a reta p tem exatamente trés pontos
distintos R, S e T. Segundo o teorema 2.1.3, existem as polares r, s e t res-
petivamente dos pontos R, S e T. De acordo com o teorema 2.1.2 o ponto P
pertencear, set (fig. 2.4).

: s
r
=R =T =S p
Figura 2.4

Suponhamos, com vista a um absurdo, que existe uma reta ¢ distinta das
retas incidentes no ponto P. Se a reta ¢ incide no ponto P, entdo pelo teorema
2.1.2, o pélo de ¢(Q) pertence & polar de P. Os pontos R, S, T e @ sao distintos
porque cada pélo tem uma tinica polar, de cordo com o teorema 2.1.3. A polar
de P contém quatro pontos R, S, T e Q o que contradiz o axioma Fs. Conclui-se
assim que pelo ponto P passam exatamente trés retas. a
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2.1 Configuragdo de Desargues

Teorema 2.1.10 (Dual do axioma Fg). Se o ponto P ndo pertence d reta m, entio
existe uma reta que contém P e qualquer pélo de m.

Nota 2.1.11. Concluimos anteriormente que qualquer reta tem exatamente um
polo e portanto a expressdo “qualquer p6lo de m” refere-se ao tnico pélo de
m. Como este enunciado é o dual do axioma Fg, optamos por deixar o texto
inalterado fazendo apenas a troca de ponto por reta e vice-versa.

Demonstragio:

Sejam dados uma reta m e um ponto P ndo incidente em m. A reta m tem
exatamente um p6lo M, pelo teorema 2.1.4. Para demonstrar o teorema quere-
mos encontrar uma reta incidente nos pontos M e P. Podemos considerar dois
casos distintos:

1. M e P sdo o mesmo ponto;
2. M e P sdo pontos distintos.

Caso 1: Se M e P séo o mesmo ponto, entdo aplicando o teorema 2.1.9, pelo
ponto P passam exatamente trés retas distintas, em particular passa uma.
Caso 2: Sendo M e P pontos distintos, de acordo com o teorema 2.1.3 existe

exatamente uma polar p do ponto P. Aplicando o axioma Fg, as retas p e m tém
um ponto  em comum (fig. 2.5).

Figura 2.5

Como o ponto Q pertence a polar dos pontos M e P, entdo pelo teorema
2.1.2 0s pontos M e P pertencem a polar de Q.
Em ambos 0s casos existe uma reta que contém P e qualquer p6lo de m. O

Lema 2.1.12. Dados dois pontos, existe uma reta que passa por ambos se e s6 se as suas
polares se intersetam.

Demonstragdo:

Sejam R e S dois pontos distintos dados e suponhamos que existe uma reta
p incidente em ambos. Pelo teorema 2.1.3, cada um dos pontos Re S tem exa-
tamente uma polar, r e s, respetivamente. As retas r e s sdo distintas, porque
pelo teorema 2.1.4, cada polar tem um tnico pélo, e R e S sdo pontos distintos
(fig. 2.6).

O ponto § néo pertence a r porque S pertence a p e se S pertencesse a r, as
retas p e r teriam um ponto em comum, o que contradiria a definicao de pélo
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S R p

Figura 2.6

e polar. Analogamente R néo pertence a s. De acordo com o axioma Fg, existe
um ponto em comum entre r e s. Assim as polares r e s intersetam-se.

Para mostrar a afirmacio reciproca, suponhamos que R e S sdo dois pontos
distintos dados e de acordo com os teoremas 2.1.3 e 2.1.4 existem as retasr e s
polares dos pontos R e S, respetivamente. Suponhamos, que as retas r e s se
intersetam num ponto T’ (fig. 2.7).

& &

Figura 2.7

De acordo com o teorema 2.1.3, existe uma tnica polar de 7. O ponto T°
pertence as polares de R e S respetivamente, portanto pelo teorema 2.1.2, S
pertence a polar de T e R pertence a polar de T'. Existe assim uma reta polar de
T a qual pertencem os pontos Re S. O

Lema 2.1.13. Ser e g sdo duas retas que ndo intersetam a reta m, entio r e q intersetam-
se no pélo de m.

Demonstracio:

Consideremos r, ¢ e m trés retas distintas e suponhamos que r e q nao in-
tersetam m. Sejam M o p6lo de m, R o pélo de r e @ o pdlo de ¢ tendo em
consideracdo o teorema 2.1.4. Suponhamos, com vista a um absurdo, que R
nao pertence a m. Entdo, pelo axioma Fg, m tem um ponto em comum com r,
o que é falso, pois por hip6tese r e m nao tém pontos em comum. Fazendo um
raciocinio analogo ao que foi feito para o ponto R concluimos que o ponto ¢
pertence a reta m. Assim R e @ pertencem a m. Segundo o teorema 2.1.2, o
ponto M pertence as polares de Re Q, ousejaar e q (fig. 2.8). Assim as retas
r e g intersetam-se no pélo de m. O

Lema 2.1.14. Por um ponto P passam exatamente trés retas que ndo intersetam a polar
de P.
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2.1 Configuracgdo de Desargues

Figura 2.8

Demonstragdo:

Dado um ponto P, pelo teorema 2.1.9, incidem neste exatamente trés retas
distintas r, s e f. De acordo com o teorema 2.1.3 o ponto P tem exatamente uma
polar p. Os pélos de r, s e ¢, respetivamente R, S e T, pertencem a p de acordo
com o teorema 2.1.2 e o teorema 2.1.3 (fig. 2.9).

s t
r
=R =T =S p
Figura 2.9

Nem o ponto § nem o ponto T" pertencem a reta r, pois caso contrario as
retas p e r teriam um ponto em comum, o que contradiria a definicio de pélo e
polar. Analogamente o ponto S ndo pertence & reta ¢, o ponto R ndo pertence
nem a reta s nem a reta ¢ e o ponto 7’ néo pertence a reta s . Assim pelo ponto
P passam exatamente trés retas que ndo intersetam a reta p, polar de P. ]

Teorema 2.1.15. Existem exatamente dez pontos e dez retas na configuragdo de De-
sargues.

Demonstragio:

De acordo com o axioma F;, existe no minimo um ponto P. Este ponto tem
exatamente uma polar p, pelo teorema 2.1.3. De acordo com o axioma Fs, a reta
p tem exatamente trés pontos R, T e S distintos. Aplicando o teorema 2.1.3,
podemos considerar as retas r, t e s polares dos pontos R, T'e S, respetivamente.
Segundo o teorema 2.1.2 o ponto P incide nas retas r, ¢t e s. De acordo com o
axioma Fs cada reta tem exatamente trés pontos. Sejam A, B, C, D, Ee G
pontos, tais que A, B e P sdo os trés pontos da reta r; C, D e P sédo os trés
pontos da reta s; os pontos E, G e P sdo os trés pontos da reta ¢ (ver fig. 2.10).
Definimos dez pontos. Suponhamos, com vista a um absurdo, que existem pelo
menos onze pontos. Seja H um décimo primeiro ponto, distinto dos anteriores.
De acordo com o teorema 2.1.3 o ponto H tem exatamente uma polar h. A reta
h e por exemplo a reta p tém um ponto em comum, aplicando o axioma Fe.
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Sem perda de generalidade, suponhamos que o ponto R é comum as retas h e
p. Como R pertence a reta h, o ponto H pertence a reta r, pelo teorema 2.1.2.
Mas o facto de H ser distinto de todos os outros pontos e pertencer a reta r
contraria o axioma Fs, pois a reta r tem quatro pontos em vez de ter trés. Assim
esta configuragdo tem exatamente dez pontos. Provou-se a existéncia de dez
pontos. Por dualidade existem exatamente dez retas.

lI:U

S =T P

Figura 2.10

O

Defini¢do 2.1.16. Dizemos que os tridngulos ABC e A; B\Cy se encontram em pers-
petiva central, se as retas AA,, BB, e CC\ se intersetam num ponto P. Ao ponto P
chamamos centro de perspetiva.

Definigio 2.1.17. Consideremos dois tridngulos ABC e A1B1C1. Suponhamos que
existem pontos R, S e T tais que R é o ponto de intersecdo das retas BC e B;C1, S é
o ponto de intersecdo das retas AC e A1Cy e T é o ponto de intersegdo das retas AB
e A1By. Dizemos que os tridngulos ABC e A1 ByC} estido em perspetiva axial se 0s
pontos R, S e T silo colineares. A reta que passa pelos pontos R, S e T chamamos eixo
de perspetiva.

Teorema 2.1.18 (Teorema de Desargues). Se dois tridngulos ABC' e A, B1C) estio
em perspetiva central, entio estdo em perspetiva axial. (Assume-seque A, B, C, A1, By,
C1 e P sio todos distintos e ndo existem trés pontos A, B, C, A1, By e C; colineares).

Demonstragdo:

Consideremos dois tridngulos ABC e A; B, C] tais que as retas AA;, BB; e
CC; se intersetem num ponto P. De acordo com o teorema 2.1.3, o ponto P tem
exatamente uma polar p. Designemos por r a reta AA;, por s areta BBy eport
areta CCy. Asretas r, s e t tem exatamente um pélo R, S e T, respetivamente,
segundo o teorema 2.1.4. Se P pertence a r, s e ¢, pelo teorema 2.1.2, os pontos
R, S e T pertencem & reta p. Sejam a, b, ¢, a1, b1 e ¢; as polares de 4, B, C, A,
By, C, respetivamente. Como C pertence a ¢, pelo teorema 2.1.2, T' incide em c.
Analogamente vemos que o ponto T pertence as retas c e ¢;, 0 ponto S pertence
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2.1 Configuragido de Desargues

asretas b e b) e o ponto R pertence as retas a e a;. Para definir a polar do ponto
A ndo podemos considerar o ponto C, pois existe uma reta que passa pelos
pontos C e A. Se o ponto C pertencesse & polar de A, entdo esta reta e a reta que
contém o ponto A tinham um ponto em comum, o que contradiria a definicdo
de p6lo e polar. Pela mesma razio, a polar de A também ndo pode passar pelos
pontos B e A;. A polar de A também nao pode passar por S nem por T, pois
pelo teorema 2.1.9 por cada ponto passam exatamente trés retas, neste caso por
S passam as retas b, b; e p e por T passam as retas ¢, ¢; e p. Entao a polar de A
passa pelos pontos C'; e B;. De modo andlogo chegamos a conclusdo que:

- apolar de A; (a;) pertencem os pontos C, B e R;

- a polar de B (b) pertencem os pontos A4;, Cy e S;
a polar de C (c) pertencem os pontos A;, By e T;
- a polar de B; (b) pertencem os pontos A, C e S;
- a polar de (1 (¢;) pertencem os pontos A, Be T.

Para ilustrar todo o nosso raciocinio feito na demonstragdo, apresentamos
um possivel modelo do Teorema de Desargues.

Figura 2.11: Um possivel modelo da configuragido de Desargues

As retas a e a; contém lados correspondentes dos tridngulos e intersetam-se
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em R. As retas b e b contém lados correspondentes dos tridngulos e inter-
setam-se em S. As retas ¢ e ¢; contém lados correspondentes dos tridngulos
e intersetam-se em 7. Os pontos T, R e S pertencem a reta p e como tal sdo
colineares. Conclui-se assim que os tridngulos estio em perspetiva a partir de
uma reta.

Esta informacao pode ser resumida na tabela 2.1.

plr|s|tlalb|lec|la | b|a
P X X
R X X
S | x X X
T | x X %
A X x | x
B X X X
C X x | x
Ay X X
B X X
C X | X | x

Tabela 2.1: Tabela de incidéncia

d

O modelo ilustrado no teorema de Desargues podera ser um exemplo re-
presentativo desta axiomaética, pois facilmente se verifica que cumpre todos os
axiomas. Assim este sistema axiomatico é consistente.

2.2 Configuracao de Papo

Papo de Alexandria viveu nos séculos Il e IV d.C., numa época de estagnagdo
da matematica grega. As suas contribui¢Oes para a matematica foram relati-
vamente pequenas, mas os seus extensos comentarios sobre as realizagdes dos
matemadticos anteriores tém um valor inestimavel. A sua obra mais importante
denomina-se por “Colecdo Matematica” e € composta por oito livros (dos quais
estdo perdidos o primeiro e parte do segundo). No livro VII é demonstrado o
resultado hoje conhecido como Teorema de Papo [ESQSC89].

Nesta sec¢do iremos introduzir a axiomatica da configuracdo de Papo. A se-
melhanga dos sistemas axiomaticos anteriores comegaremos por introduzir os
axiomas em que se baseia esta configuracdo. Tal como na configurag¢io anterior
terminaremos com o teorema que dd o nome a esta configuracdo: Teorema de
Papo.
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2.2 Configurag¢do de Papo

Consideremos os axiomas que se seguem para a configuracdo de Papo.

Axiomas:
Axioma G;: No minimo, existe uma reta.
Axioma G;: Existem exatamente trés pontos distintos em cada reta.
Axioma G3: Nem todos os pontos estdo sobre uma reta.
Axioma Gy4: Por dois pontos distintos passa no maximo uma reta.

Axioma Gs: Se P é um ponto que néo esté sobre a reta m, existe exatamente
uma reta que passa por P paralelaa m .

Axioma Ge: Se m é uma reta que ndo esta sobre o ponto P, entdo existe exata-
mente um ponto sobre m ndo colinear com P.

A Configuragao de Papo é um sisterna axiomatico que satisfaz o principio da
dualidade. Tal como fizemos na secc¢do anterior vamos enunciar os duais dos
axiomas anteriores e verificar que correspondem a teoremas nesta geometria.
Néo introduziremos os duais dos axiomas Gs e G, pois estes sdo duais um do
outro.

Teorema 2.2.1 (Dual do axioma G1). No minimo, existe um ponto.

Demonstragio:

De acordo com o axioma Gi, existe, no minimo, uma reta e em cada reta
existem exatamente trés pontos, de acordo com o axioma G,. Logo, existe um
ponto, no minimo. O

Teorema 2.2.2 (Dual do axioma G;). Existem exatamente trés retas distintas sobre
cada ponto.

Demonstragio:

Seja P um ponto qualquer. Aplicando o axioma G, existe, no minimo, uma
reta r. Podemos considerar dois casos distintos:

1. Pestasobrearetar.
2. P nio estd sobre a reta r.

Caso 1: Se o ponto P esta sobre a reta r, entdo segundo o axioma G, existe
um ponto S que ndo estd sobre a reta r. Aplicando o axioma Gs ao ponto S e
a reta r, existe exatamente uma reta s que passa pelo ponto .S paralela a reta
r. De acordo com o axioma G, a reta s tem exatamente trés pontos distintos,
um deles € o ponto S, aos outros dois podemos chamar @ e R. Como a reta s
ndo incide no ponto P, existe exatamente um ponto sobre s ndo colinear com o
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ponto P, segundo o axioma Gg. Como os pontos S, Q e R estdo em igualdade
de circunstancias, sem perda de generalidade, consideremos que o ponto ¢} ndo
é colinear com P. Logo, como consequéncia do axioma G e aplicando o Gy,
construfmos as retas PR e PS. Assim, no ponto P incidem as retas r, PR e PS
(fig. 2.12).

r P

3 & |

R
Figura 2.12

Vamos provar que ndo existem mais retas incidentes em P. Suponhamos,
com vista a um absurdo, que existe uma quarta reta ¢, distinta das anteriores,
que incide no ponto P. A reta ¢ e a reta s tém um ponto em comum, caso con-
trario obterfamos uma contradi¢do com o axioma Gs, pois ja existe a reta r, que
incide no ponto P e ¢é paralela a reta s. A reta t ndo pode incidir no ponto @,
pois o ponto P néo € colinear com o ponto () e como a reta s sé tem trés pontos,
a reta ¢ vai ter de incidir ou no ponto R ou no ponto S. Assim a reta ¢ teria de
coincidir com a reta PR ou com a reta P.S o que é impossivel, pois supusemos
que a reta ¢ é distinta das retas anteriormente definidas.

Caso 2: se o ponto P ndo estd sobre a reta r, aplicando o axioma Gs, existe
exatamente uma reta t sobre o ponto P paralela a r. De acordo com o axioma
G;, a reta r tem exatamente trés pontos T, U e M distintos. Como o ponto P
nio esta sobre a reta r, entdo pelo axioma G existe exatamente um ponto sobre
a reta r néo colinear com o ponto P. Sem perda de generalidade suponhamos
que o ponto M néo é colinear com o ponto P. Assim, existe uma reta que passa
pelos pontos P e T e uma reta que passa pelos pontos P e U, de acordo com o
axioma G, estas retas sdo tinicas e vamos designé-las por PT e PU. No ponto
P incidem as trés retas t, PT e PU. De forma andloga ao caso anterior se prova
que néo existe uma quarta reta que incide no ponto P.

Concluimos que em cada ponto incidem exatamente trés retas. O

Teorema 2.2.3 (Dual do axioma G3). Nem fodas as retas estdo sobre o mesmo ponto.

Demonstragio:

Aplicando o axioma Gj, existe no minimo uma reta r. De acordo com o
axioma Gj existe um ponto P que ndo estd sobre r. Portanto pelo axioma Gs,
existe exatamente uma reta m sobre o ponto P paralela a r (fig. 2.13).

Como areta r e a reta m ndo se intersetam, existem duas retas distintas que
nao incidem no mesmo ponto. |

Teorema 2.2.4 (Dual do axioma Gy). Duas retas distintas estdo no mdximo sobre
um ponto.
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2.2 Configuracao de Papo

Figura 2.13

Demonstragdo:

Dadas duas retas distintas r e s, segundo o axioma Gg3, existem exatamente
trés pontos distintos em cada uma delas. Suponhamos com vista a um absurdo
que dois desses pontos, Q e T, sdo comuns as duas retas (fig. 2.14).

8

NS Q7 r
"

Figura 2.14

Como os pontos @) e T estdo sobre as retas r e s, entdo aplicando o axioma
G4, as retas r e s sdo a mesma, o que contradiria a nossa hipétese. Portanto r e
s estdo no maximo sobre um ponto. o

Verificamos que este sistema satisfaz o principio de dualidade.

Lema 2.2.5. Cada reta admite exatamente duas retas paralelas.

Demonstragdo:

Seja m uma reta dada. Segundo o axioma Gy, na reta m existem exatamente
trés pontos R, S e T distintos. De acordo com o axioma Gs, existe um ponto
P que néo esté sobre a reta m. Aplicando o axioma Gs, existe exatamente uma
reta n sobre P paralela a m. Como m é uma reta que nao passa pelo ponto P,
entdo existe exatamente um ponto sobre m ndo colinear com o ponto P, pelo
axioma Gg. Sem perda de generalidade podemos supor que o ponto R nédo é
colinear com o ponto P. Assim, existe uma reta que passa pelos pontos P e S
e uma reta que passa pelos pontos P e T'. De acordo com o axioma Gy, estas
retas sdo tinicas e vamos designa-las por PS e PT. De acordo com o axioma
G,, areta PS tem exatamente trés pontos, os pontos S e P e um terceiro ponto
Q. O ponto @ ndo pertence a reta m, pois caso contrario as retas PS e m seriam
a mesma. Analogamente o ponto ) ndo pertence a reta n. Aplicando o axioma
Gs, existe exatamente uma reta ! incidente no ponto ) e paralela a reta m (fig.
2.15).

Verificamos a existéncia de duas retas paralelas a m. Suponhamos, com vista
a um absurdo, que existem pelo menos trés retas paralelas a m. Seja s uma
terceira reta paralela a m distinta de [ e n. A reta s ndo pode incidir em nenhum
dos pontos R, S e T, por hipétese, assim a reta s é distinta das retas PS e PT.
No ponto P incidem as retas n, PS e PT, logo de acordo com o teorema 2.2.2 a
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Figura 2.15

reta s ndo pode incidir em P. Verificamos facilmente que a reta s ndo incide no
ponto @, pois caso incidisse existiam duas retas, [ e s paralelas a reta m, o que
contraria o axioma Gs. A reta s ndo incide em nenhum dos outros dois pontos
de cada uma das retas | e n, por raciocinio andlogo ao que foi feito para o ponto
Q. Consideremos, de acordo com o axioma G, trés pontos K, W e Z na reta s
(fig. 2.16).

m_ I 1§
T
! Q
n
P
P —
K W ~Z
Figura 2.16

Aplicando o axioma Gs ao ponto P e a reta s, existe exatamente um ponto
na reta s nédo colinear com o ponto P. Sem perda de generalidade, suponhamos
K o ponto nio colinear com P. Assim existe uma reta incidente nos pontos P
e W e outra nos pontos P e Z. De acordo com o teorema 2.2.2 sabemos que no
ponto P apenas incidem as retas n, P.S, PT e portanto os pontos W e Z tém de
incidir nalguma destas retas. J4 vimos que a reta s ndo interseta nem a reta n
nem areta PS, assim ambos os pontos W e Z tém de incidir na reta PT, o que é
um absurdo pois cada reta s6 tem trés pontos. Portanto sé podem existir duas
retas paralelas a m. g

No capitulo 1 demonstramos o teorema de Papo na geometria dos nove pon-
tos e doze retas, vamos aqui enunciar e demonstrar este teorema no ambito
desta axiomatica. Adotaremos a defini¢do 1.4.5 de poligono e a defini¢do 1.4.6
de lados opostos dadas.

Teorema 2.2.6 (Teorema de Papo). Sejam m e n duas retas paralelas com pontos
distintos R, S, T sobre m e U, P, Q) sobre n, tais que R e U ndo sdo colineares, S e
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2.2 Configuracdo de Papo

P ndo sdo colineares e Q e T ndo sdo colineares. Entdo podemos construir o hexdgono
RPTUSQ. Além disso os seus lados opostos intersetam-se e 0s trés pontos de intersegdo
sdo colineares.

Demonstragio:

Tomemos duas retas paralelas m e n com pontos distintos R, S e T sobre m
e @, P e U sobre n, tais que R e U ndo sdo colineares, S e P ndo sdo colineares
e T e @ ndo sdo colineares e as retas PR, QR, QS, SU, PT e TU. Estas retas
sdo os lados do hexdgono RPTUSQ. De acordo com a definicdo 1.4.6, o lado
oposto ao lado PR é SU, o lado oposto ao lado PT é QS e o lado oposto ao lado
TU é QR.

De acordo com o axioma G,, existem exatamente trés pontos distintos na
reta PR. Seja K um ponto sobre a reta PR, distinto de R e P (fig. 2.17).

Ne o/

n

U Q
A /NN
Figura 2.17

O ponto @ é colinear com o ponto R e com o ponto P, assim ndo pode ser
colinear com o ponto K, pelo axioma G, aplicado ao ponto ) e a reta RP.
Como K ndo é colinear com (), em particular, K ndo estd sobre a reta SQ. O
ponto R ndo estd sobre a reta SQ porque caso contrario pelo axioma Gy, a reta
m e a reta S() seriam a mesma. Analogamente, o ponto P ndo estd sobre a reta
SQ. Assim a reta SQ) é paralela a reta PR. Pelo axioma Gs, existe exatamente
uma reta paralela a reta PR que passa pelo ponto S. Como a reta SQ esta nestas
condigGes, as retas SU e PR tém um ponto em comum. Como nem o ponto R
nem o ponto P estdo sobre SU o ponto K tem de estar sobre SU.

Segundo o axioma G, existem exatamente trés pontos distintos na reta RQ,
pelo que podemos considerar um ponto W sobre a reta RQ, distinto de Re Q
(fig. 2.18).

Por uma argumentagéo anédloga a anterior podemos demonstrar que o ponto
W pertence a reta TU.

Novamente de acordo com o axioma G, existem exatamente trés pontos
distintos na reta SQ, seja Z um ponto sobre a reta SQ, distinto de S e Q (fig.
2.19).

Por razdes andlogas as anteriores o ponto Z pertence a reta TP.

55



n

U Q
A /N N\
Figura 2.19

De acordo com o axioma Gs, como K é um ponto que ndo esté sobre a reta
m, existe exatamente uma reta [ sobre K paralela a m. O ponto K ndo é colinear
com o ponto ¢, mas K tem de ser colinear com dois pontos de RQ) que sé podem
ser os pontos R ou W; e colinear com dois pontos de S¢ que s6 podem ser os
pontos S ou Z. Assim o ponto K é colinear com o ponto W e com o ponto Z.
De acordo com o teorema 2.2.2, pelo ponto K s6 passam trés retas RP, SU e l.
Como as retas RP e SU tém trés pontos cada uma, respeitando assim o axioma
G, os pontos W e Z ndo podem pertencer a estas retas e portanto incidem
ambos na reta [. Logo os pontos K, W e Z sdo colineares (fig. 2.20).
a
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2.2 Configuragao de Papo

n

U Q
A /N N\
Figura 2.20

Reparemos que a demonstragdo do teorema é diferente da que foi feita no
capitulo anterior, o que é natural uma vez que o sistema axiomatico é diferente.

Teorema 2.2.7. Existem exatamente nove pontos e nove retas na configuragdo de Papo.

Demonstracdo:

Segundo o axioma G; existe, no minimo, uma reta m. De acordo com o
axioma G; existem exatamente trés pontos R, S, T distintos na reta m. Segundo
o axioma G3, existe um ponto P que ndo pertence a reta m. Aplicando o axioma
Gs, existe exatamente uma reta n incidente no ponto P paralela a reta m (fig.
2.21).

m & 1
n .
Figura 2.21

De acordo com o axioma G,, na reta n existem exatamente trés pontos, um
deles é o ponto P, aos outros dois podemos-lhes chamar U, ). Como a reta m
ndo passa pelo ponto U, aplicando o axioma G¢ existe exatamente um ponto
sobre m nao colinear com o ponto U. Sem perda de generalidade, podemos
escolher R como o ponto que esta sobre m e que néo é colinear com o ponto U.
Sendo assim, existe uma reta incidente nos pontos U e T' e uma reta incidente
nos pontos S e U, de acordo com o axioma Gy, estas retas sao tinicas e vamos
designéa-las por SU e TU (fig. 2.22).

Como R ndo é colinear com o ponto U, aplicando o axioma G4, podemos
construir as retas PR e R(Q). Aplicando o axioma G, existe um ponto em m nédo
colinear com o ponto P, esse ponto sé pode ser o ponto S ou o ponto 1" (pois
anteriormente definiu-se a reta PR), sem perda de generalidade podemos su-
por que é o ponto S. Assim pelo axioma G4 define-se a reta PT. Finalmente
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Figura 2.22

aplicando o axioma G4 ao ponto ) e a reta m, o ponto Q tem de ser colinear
com S ou com o ponto T'. Nédo pode ser com o ponto 1" porque ao aplicarmos o
axioma Gg a este ponto e a reta n terfamos uma contradi¢do, portanto o ponto @
tem de ser colinear com S. Reparemos que temos duas retas m e n e seis pontos
nas condi¢Ses do teorema de Papo, portanto podemos aplicar este teorema que
garante a existéncia de um hexdgono em que os lados opostos se intersetam e
os trés pontos de intersegao estdo sobrc a mesma reta. Verificamos a existén-
cia de nove pontos e nove retas. Comecemos por demonstrar que ndo existem
mais pontos. Suponhamos, com vista a um absurdo, que existem pelo menos
dez pontos. Seja V um décimo ponto. Aplicando o axioma Gy, pelos pontos V'
e I passa uma reta RV. Assim no ponto R incindem as retas RV, RQ, RP em;
0 que contraria o teorema T 2.2.2. Portanto csta configuracdo tem exatamente
nove pontos. Seguidamente demonstraremos que ndo existem mais retas. Su-
ponhamos, com vista a um absurdo, que existem pelo menos dez retas. Seja j
uma décima reta diferente de todas as retas definidas anteriormente. De acordo
com o lema 2.2.5, a reta j ndo pode ser paralela a reta m pois foram definidas
as retas | e n como retas paralelas a m. Assim as retas j e m tém um ponto em
comum, que s6 pode ser um dos pontos R, S ou T. Nestes pontos ja incidem
trés retas, logo a reta j ndo pode incidir em nenhum deles, de acordo com o
teorema T 2.2.2. Portanto esta configuragdo tem exatamente nove retas. O
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Capitulo 3

Planos e Espacos Projetivos
Finitos

3.1 Planos Projetivos Finitos

Os planos projetivos apresentam uma grande diferenca em relagéo a geometria
Euclidiana. Essa diferenca deve-se ao facto de no plano projetivo finito ndo
existirem retas paralelas, isto é, quaisquer duas retas intersetam-se num ponto.
Iremos ao longo desta secgdo enunciar e demonstrar vérios resultados que nos
ajudam a compreender esta geometria. Finalizaremos com uma breve discussao
sobre a existéncia de planos projetivos.

Este sistema axiomatico é uma generalizacdo do sistema axiomético da ge-
ometria dos sete pontos. Embora os axiomas deste sistema e do sistema axio-
matico da geometria dos sete pontos sejam distintos, o modelo de ordem dois
encontrado é exatamente o mesmo. O plano projetivo de ordem dois também
é conhecido por plano de Fano.

Seja n > 1 um natural. Um conjunto de pontos que satisfaca o seguinte
sistema de axiomas chama-se plano projetivo de ordem n.

Axiomas:

Axioma Hj: Existem pelo menos quatro pontos néo colineares trés a trés.

Axioma Hj: Existe pelo menos uma reta incidente com exatamente n+1 pontos
distintos.

Axioma H3: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma Hy: Dadas duas retas distintas, existe pelo menos um ponto incidente
com ambas.
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Modelos que demostram a independéncia dos axiomas

Para cada axioma iremos dar um exemplo que demonstra a sua indepen-
déncia e facilmente se verifica que se cumprem todos os axiomas com excegdo
do axioma em questdo. Nos exemplos, que daremos para os axiomas H; e Hj,
o axioma Hy é cumprido trivialmente porque nao existem duas retas.

Axioma Hj: Existem pelo menos quatro pontos ndo colineares trés a trés.

Exemplo: O modelo formado por uma reta com n + 1 pontos contraria o
axioma Hy, pois todos os pontos sio colineares (fig. 3.1).

P P P

Figura 3.1

Axioma Hj: Existe pelo menos uma reta incidente com exatamente n + 1
pontos distintos.

Exemplo:

e Sen =2, o plano projetivo de ordem trés, descrito mais & frente no exem-
plo 3.1.13, ndo cumpre a axiomatica deste plano projetivo, pois todas as
retas tém quatro pontos e ndo trés.

e Sen > 2, oplano projetivo de ordem dois, descrito mais a frente no exem-
plo 3.1.12, cumpre todos os axiomas menos este, uma vez que que todas
as retas tém trés pontos e ndo n + 1.

Axioma Hj: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: Modelo constituido pelos pontos A e D e por uma reta incidente
nos pontos ki, Ey, ..., By (fig. 3.2).

Ao En+1

Ey D,

Figura 3.2

Este modelo ndo cumpre o axioma Hj3, pois existem dois pontos distintos
nos quais ndo incide nenhuma reta.

Axioma Hy: Dadas duas retas distintas, existe pelo menos um ponto inci-
dente com ambas.
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3.1 Planos Projetivos Finitos

Exemplo: Consideremos os pontos A, B, C1, C, - - -, Cps1 . Sejam r uma reta
incidente nos pontos A e B e s uma reta incidente nos pontos C;, C, - - -, Cpy1-
Consideremos ainda, as retas incidentes no ponto A e em cada um dos pontos
da reta s e as retas incidentes no ponto B e em cada um dos pontos da reta s,
como ilustra a figura 3.3.

A B r

C1 Cn+1 S
AN\

Figura 3.3

Este modelo contraria o axioma Hy, pois as retas r e s ndo tém um ponto em
comum.

A semelhanga do que foi dito no capitulo um, na definicio 1.1.5 da Geome-
tria dos 4 pontos, o dual dos axiomas deste sistema axiomatico é obtido tro-
cando os termos ponto e reta. Faremos, seguidamente, o dual de cada um dos
axiomas e a sua respetiva demonstragado, provando assim que este sistema axi-
omdtico satisfaz o principio da dualidade.

Teorema 3.1.1 (Dual do axioma H,). Existem pelo menos quatro retas ndo concor-
rentes trés a trés.

Demonstragio:

Pelo axioma H,, existem quatro pontos P, R, S e T ndo colineares trés a trés.
Aplicando o axioma Hj, construimos as retas PS, RT, ST e PR (fig. 3.4).

P R

Figura 3.4

Suponhamos, com vista a um absurdo, que trés destas retas sdo concorren-
tes. Sem perda de generalidade, suponhamos que PS, RT e ST incidem num
ponto ). Podemos considerar dois casos:

1. o ponto Q ¢ distinto dos pontos ja definidos;

2. o ponto () é um dos pontos ja definidos.
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Caso 1: se o ponto () é distinto dos pontos P, R, S e T, entdo os pontos T' e
Q incidem simultaneamente nas retas BT e ST (fig. 3.5).

P R

Figura 3.5

De acordo com o axioma Hj, as retas RT e ST sdo a mesma, logo os pontos
R, S e T sdo colineares, o que contradiz a nossa hipétese.

Caso 2: suponhamos que os pontos () e S sdo o mesmo. Nesse caso a reta
RT passa pelo ponto S, logo os pontos R, S e T sdo colineares, o que contradiz a
nossa hipétese. Analogamente podemos ver que o ponto @) ndo pode coincidir
com os pontos P, ReT.

Portanto existem pelo menos quatro retas nio concorrentes trés a trés. [

Teorema 3.1.2 (Dual do axioma Hy). Existe pelo menos um ponto incidente com
exatamente n + 1 retas distintas.

Demonstragdo:

Pelo axioma H;, existe pelo menos uma reta r com n + 1 pontos distintos
Ay, Az, As, ..., Ape1. De acordo com o axioma Hj, existe um ponto P que ndo
incide na reta r. Aplicando o axioma Hj construimos as retas r1, 2, ..., Thi1
incidentes, respetivamente, nos pontos A e P, Aye P, ..., Ay, e P (ver fig. 3.6).
Verifiquemos em primeiro lugar que existem n+1 retas distintas. Suponhamos,
com vista a um absurdo, que as retas r; e r; S0 a mesma, com ¢ # j. Entédo
ambos 0s pontos A; e A; sdo pontos distintos e sdo incidentes na reta r;, logo
de acordo com o axioma Hj, as retas r; e r sdo a mesma. No entanto o ponto P
incide na reta r;, mas nao incide na reta r e chegamos a uma contradi¢do. Assim
as retas r; e r; sdo distintas. Verifiquemos agora que nao existe mais nenhuma
reta incidente no ponto P. Suponhamos, com vista a um absurdo, que existe
uma reta s, distinta das retas ry, ..., ry+1, que incide no ponto P. De acordo
com o axioma Hy, as retas r e s incidem num ponto em S. Como a reta r tem
exatamente n + 1 pontos, o ponto S tem de ser um dos pontos Aq, Az, 43, ...,
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3.1 Planos Projetivos Finitos

Ani.Sejai €1,...,n+1tal que S = A;. Entdo A, incide na reta s, aplicando o
axioma Hj aos pontos P e A; vemos que as retas r; e s S0 a mesma.
Concluimos entdo que P incide em exatamente n + 1 retas (fig. 3.6).

NAL N4 JAns r

Figura 3.6

|

Teorema 3.1.3 (Dual do axioma Hj3). Dadas duas retas distintas, existe exatamente
um ponto incidente em ambas.

Demonstracio:

Sejam r e s duas retas distintas. De acordo com o axioma Hy, existe um
ponto P incidente em ambas as retas (fig. 3.7).

r ‘Py
/
Figura 3.7

Suponhamos, com vista a um absurdo, que as retas r e s incidem em dois
pontos P e () distintos (fig. 3.8).

S
\.P Q./ r
\_/'

Figura 3.8

Se P e (Q sdo pontos distintos, pelo axioma H3, as retas e s sdo a mesma.
Isto é absurdo porque as retas r e s sdo distintas, por hipdtese.
Portanto duas retas distintas incidem exatamente num ponto. O

Teorema 3.1.4 (Dual do axioma Hy). Dados dois pontos distintos, existe pelo menos
uma reta incidente em ambos.
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Demonstragio:

Sejam P e R dois pontos distintos dados. De acordo com o axioma Hj, existe
exatamente uma reta incidente em ambos os pontos P e R. Logo verifica-se o
teorema. 0

Teorema 3.1.5. Dados dois pontos P e Q, existe uma reta que ndo incide nem com P
nem com ().

Demonstragdo:

Sejam P e ) pontos distintos. Segundo o teorema 3.1.1, existem quatro retas
distintas, ndo concorrentes trés a trés. Se uma das retas ndo incide com o ponto
P nem com o ponto (), ji temos uma reta néo incidente com nenhum destes
pontos. Caso contrario, como ndo pode haver trés retas incidentes com um dos
pontos P ou (), teremos duas retas r; e ry incidentes em P e outras duas retas
r1 e r3 incidentes em (). Aplicando o axioma Hy, existe um ponto R incidente
em 73 e r4 e um ponto S incidente em r; e r; (fig. 3.9). Segundo o axioma Hj,

2

P
3

T4

r
Figura 3.9

existe uma reta m incidente em R e em S. Suponhamos que o ponto P incide
na reta m (fig. 3.10). Temos que os pontos R e P incidem nas retas r4 e m, logo

Figura 3.10

as retas r4 e m sdo coincidentes; por outro lado temos que se os pontos S e P
incidem nas retas r, e m, logo r> e m sdo coincidentes, de acordo com o axioma
Hj. Assim as retas r4 e r; sdo coincidentes. Logo P néo incide na reta m. Por
processo andlogo se prova que () ndo pertence a m.
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3.1 Planos Projetivos Finitos

Provamos que existe uma reta que ndo incide nem com P nem com . O

Como este sistema axiomético satisfaz o principio da dualidade entdo tam-
bém é valido o dual do teorema 3.1.5, que vamos enunciar seguidamente sem
fazer a demonstragio.

Teorema 3.1.6 (Dual do teorema 3.1.5). Dadas duas retas r e s, existe um ponto que
ndo incide nem em r nem em s.

Teorema 3.1.7. 1. Se P e Q sdo dois pontos distintos, entdo existe uma bijecdo
entre o conjunto das retas que passam pelo ponto P e o conjunto das retas que
passam pelo ponto Q.

2. Se r e s sdo duas retas distintas, entdo existe uma bije¢io entre os conjuntos dos
pontos das retas r e s.

Demonstragdo:

1: Se P e @) sdo dois pontos distintos, existe uma reta r ndo incidente nem
no ponto P nem no ponto ¢} de acordo com o teorema 3.1.5 (fig. 3.11).

P
.

Q

L
Figura 3.11
Seja ¢ uma reta incidente no ponto P. Pelo teorema 3.1.3 existe um tnico

ponto R comum as retas r e t. Assim sendo definimos a funcédo f que a cada
reta t incidente no ponto P faz corresponder a respetiva reta RQ (fig. 3.12).

Figura 3.12

f : {retas incidentes no ponto P} — {retas incidentes no ponto Q}

t— RQ
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Provemos a injetividade. Sejam t; e t, duas retas distintas que passam pelo
ponto P. Entdo os pontos R; e R, também sao distintos, caso contrario pelo axi-
oma Hj as retas t; e ¢, seriam a mesma. Assim as retas R1Q e R, sdo distintas
(fig. 3.13).

R

Figura 3.13

Provemos a sobrejetividade. Seja ¢ uma reta arbitrdria que incide no ponto
Q. Esta reta interseta a reta » num ponto R, de acordo com o teorema 3.1.3. De
acordo com o axioma Hj3, nos pontos R e P incide exatamente uma reta RP.
Assim a reta g é a imagem da reta RP pela funcdo f. A fungéo é sobrejetiva.

Concluimos que existe uma bijegdo entre as retas que passam pelos pontos
Peq@.

2: Se r e s sdo duas retas distintas, entdo existe uma bije¢do entre os pontos
das retas r e 5. Se dados P e @ dois pontos distintos, entdo existe uma bijecdo

entre as retas que passam pelos pontos P e (), como este sistema axioméatico
é dual, logo dadas r e s duas retas distintas, entdo existe uma bijegio entre os
pontos de ambas as retas. O

Teorema 3.1.8. Dada uma reta r e um ponto P, existe uma bijegdo entre os pontos da
reta r e as retas que incidem no ponto P.

Demonstracio:

Sejam dados uma reta r e um ponto P. Podemos considerar dois casos:

1. o ponto P ndo incide na reta r;

2. o ponto P incide nareta r.

Caso 1: definamos a funcao g, que a cada ponto () da reta r faz corresponder
areta PQ.

g : {pontos da reta r} — {retas que incidem no ponto P}

Q@ — PQ
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3.1 Planos Projetivos Finitos

Provemos a injetividade. Se @1 e ()2 sdo dois pontos distintos dados, entdo
as retas PQ; e PQ); sdo distintas pelo axioma Hj.

Provemos a sobrejetividade: seja s uma reta arbitraria que incide no ponto
P. Esta reta interseta a reta » num ponto T, de acordo com o teorema 3.1.3, logo
a imagem do ponto T pela fungéo g é a reta s. Portanto a fungao é sobrejetiva.

Caso 2: o ponto P incide na reta r. Pelo teorema 3.1.1 existe uma reta s que
ndo incide no ponto P. Pelo ponto dois do teorema 3.1.7 existe uma bijegdo h
entre os pontos da reta r e os pontos da reta s. Seja j a funcio que a cada ponto
Q da reta r faz corresponder a reta h (Q) P (fig. 3.14).

Figura 3.14

j : {pontos da reta r} ~— {retas que incidem no ponto P}

Q—h@P

Provemos a injetividade da fung¢do j. Dados os pontos (1 e (» distintos
entdo os pontos h (Q1) e i (Q)2) também sdo distintos porque a func¢éo h é uma
bijecdo. Portanto as retas h (Q1) P e h(Q)2) P sdo distintas pelo axioma Hj.

Provemos a sobrejetividade da fungédo j. Sejat uma reta arbitréria que incide
no ponto P. A reta t interseta a reta s num ponto S, de acordo com o teorema
3.1.3. Como h é uma bijecdo existe um ponto () na reta r tal que k() é o ponto
S. Assim a imagem do ponto () é a reta £. Logo a funcio é sobrejetiva.

Conclufmos assim que existe uma bijegdo entre os pontos da reta r e as retas
que incidem no ponto P. g

Teorema 3.1.9. Num plano projetivo de ordem n, cada reta incide em exatamente n+1
pontos.

Demonstragio:

Seja r uma reta dada. Pelo axioma Hj, existe pelo menos uma reta s inci-
dente em exatamente n + 1 pontos. Podemos ter dois casos:

1. asretas r e s si0 a mesma;

2. as retas r e s sdo distintas.
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Caso 1: se as retas r e s s30 a mesma, entdo a reta r incide em exatamente
n + 1 pontos.

Caso 2: se as retas r e s sdo distintas, entdo aplicando o ponto dois do te-
orema 3.1.7, existe uma bije¢do entre os pontos das retas r e s. Assim a reta r
também tem exatamente n + 1 pontos. m

Teorema 3.1.10. Num plano projetivo de ordem n, cada ponto é incidente em n + 1
retas.

Demonstragdo:

Como este sistema axiomatico é dual, se cada reta é incidente com n + 1
pontos, entdo cada ponto incide também em exatamente 7 + 1 retas. O

Teorema 3.1.11. Um plano projetivo de ordem n, tem exatamente n? + n + 1 pontos

en? +n+1 retas.

Demonstragio:

De acordo com o axioma Hj, existe pelo menos uma reta r com exatamente
n + 1 pontos, P, P, ..., P,,1. Segundo o axioma H;, sabemos que existe
um ponto P do plano nédo incidente na reta r. Aplicando teorema 3.1.10, o
ponto P incide em exatamente n + 1 retas, 71, r, ..., Tn1. Tendo em aten-
¢éo o teorema 3.1.9, cada uma destas retas incide em exatamente n + 1 pontos
(o ponto P e n outros pontos). Concluimos que, no minimo, o niimero de pon-
tos é:

(n+Dn+1=n*+n+1

Vejamos que nédo existem mais pontos. De acordo com o axioma H3, qualquer
ponto distinto de P tem de ser incidente numa das retas ry, 1y, . .., ry41 € assim
é um dos pontos considerados acima.

Como este sistema axiomatico satisfaz o principio da dualidade, entdo exis-
tem n? + n + 1 retas. a

Vamos apresentar a seguir dois modelos para esta axiomatica, um do plano
projetivo de ordem dois, outro de ordem trés. Em ambos os exemplos, fazemos
uma pequena descri¢do da sua construgao, a partir dos axiomas.

Exemplo 3.1.12. Um possivel modelo para o plano projetivo de ordem dois.

Existem quatro pontos A, B, C' e D néo colineares trés a trés, de acordo com
o axioma H;. Aplicando o axioma H3, construimos as retas AB, AC, AD, BC,
BD e CD. Sendo um plano de ordem dois, pelo teorema 3.1.9, cada reta tem
exatamente trés pontos e de acordo com o teorema 3.1.11, existem exatamente
sete pontos e sete retas. Como existem sete pontos falta-nos definir trés pontos,
sejam E, F' e G esses pontos. As retas definidas anteriormente sé tém dois
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3.1 Planos Projetivos Finitos

pontos, entdo, sem perda de generalidade, suponhamos que o ponto £ incide na
reta AC, o ponto F na reta CD e o ponto G na reta AD. Temos assim definidas
as retas ADG, ABF e ACE com trés pontos. As retas AB, BC' e BD ainda
s6 tém dois pontos e o terceiro ponto tera de ser um dos pontos ja definidos.
Aplicando o axioma Hj, a reta BC incide no ponto G, pois é o tnico ponto
dos definidos que n&o € colinear nem com o ponto B nem com o ponto C, caso
contrério contradiziamos o axioma Hs. A reta BD incide no ponto E e a reta
AB incide no ponto F por razao andloga a anterior. Falta-nos definir uma reta,
aplicando o axioma Hj construimos a reta EF, o outro ponto desta reta s6 pode
ser o ponto G, pois € o tinico ponto dos definidos que néo € colinear nem com
o ponto E nem com o ponto F. As sete retas sdo: ABF, ACE, ADG, BCG,
BDE,CDF e EFG (fig. 3.15).

D C

F %N

Figura 3.15: Um possivel modelo para o plano projetivo de ordem dois

A construgio deste modelo verifica todos os axiomas.

Observemos que, se no modelo anterior, que construimos para o plano pro-
jetivo de ordem dois, retirarmos uma reta e os seus pontos, vamos obter um
modelo que satisfaz o sistema axiomaético da geometria dos quatro pontos. No
préximo capitulo, planos afins finitos, estudaremos mais detalhadamente este
fenémeno.

Salientamos ainda o facto deste modelo ser equivalente ao modelo apresen-
tado na geometria finita dos sete pontos. Isto ndo ¢ mera casualidade. Todos
os axiomas do plano projetivo de ordem dois podem ser deduzidos como teo-
remas a partir dos resultados da geometria dos sete pontos. Da mesma forma
todos os axiomas da geometria finita dos sete pontos podem ser obtidos como
teoremas a partir dos resultados do plano projetivo de ordem dois. Para melhor
compreendermos o que acabamos de afirmar, vamos a titulo de exemplo, esco-
lher um axioma de cada uma das geometrias e deduzi-lo a partir dos resultados
da outra geometria. Comecemos por exemplificar como deduzir o axioma H; a
partir dos resultados da geometria finita dos sete pontos.

Axioma Hj: Existem pelo menos quatro pontos nédo colineares trés a trés.
Dedugio:
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De acordo com o teorema 1.3.7, existem sete retas, sejam r e s duas delas.
Estas retas tém um tinico ponto P em comum, segundo o teorema 1.3.1. As
retas r e s tém trés pontos cada uma, segundo os axiomas D5 e Dy, um é o
ponto P, aos outros dois pontos da reta r chamamos R e T e aos outros dois
pontos da reta s chamamos ) e S. Para que trés dos pontos @, R, S e T fossem
colineares, seria necessério que o ponto R ou T incidisse na reta s ou o ponto Q
ou S incidisse na reta r, 0 que nédo acontece.

Verificamos a existéncia de quatro pontos néo colineares trés a trés. Ol

Finalizaremos por exemplificar como deduzir o axioma D a partir dos re-
sultados do plano projetivo.

Axioma Dg: Nem todos os pontos pertencem a mesma reta.
Deducgio:

De acordo com o teorema 3.1.5, dados dois pontos P e Q, existe uma reta que
ndo incide nem com P nem com (). Portanto nem todos os pontos pertencem a

mesma reta.
(!

Exemplo 3.1.13. Um possivel modelo para o plano projetivo de ordem trés.

Existem quatro pontos A, C, E e L ndo colineares trés a trés, pelo axioma
H;. Aplicando o axioma Hj, construimos as retas AC, AE, AL, CE,CLe EL.
Como o plano é de ordem trés, pelo teorema 3.1.9, cada reta tem exatamente
quatro pontos. As retas AC, AE e AL tém o ponto A em comum, logo néo po-
dem ter mais nenhum ponto em comum, pois isso contraria o teorema 3.1.3.
Entido podemos considerar os pontos B e F incidentes na reta AE, os pontos G
e H incidentes na reta AC e os pontos K e M incidentes na reta AL. De acordo
com o teorema 3.1.3, as retas CE e AL tém um ponto em comum, sem perda
de generalidade, podemos supor que é o ponto M, as retas CL e AE tém um
ponto em comum, sem perda de generalidade, podemos supor que é o ponto
F; e asretas EL e AC tém um ponto em comum, sem perda de generalidade,
podemos supor que é o ponto G. Como estas retas também tém quatro pon-
tos podemos considerar que os pontos D, J e I pertencem, respetivamente, as
retas CFE, CL e EL. De acordo com o teorema 3.1.11, ndo podem haver mais
pontos neste modelo, pois ja definimos os treze pontos. Como, de acordo com
o teorema 3.1.10, cada reta tem exatamente quatro pontos e pelo axioma Hp,
em dois pontos distintos incide exatamente numa reta, entdo definimos assim,
com argumentos semelhantes aqueles que acabamos de usar, as restantes retas,
que sao treze de acordo com o teorema 3.1.11, ADIJ, BGJM, BDHL, BCIK,
DFGK, EHKJ e FHIM. Construimos assim o modelo ilustrado na figura
3.16
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3.1 Planos Projetivos Finitos

g
A —
K 3 \ F
C
.................. ~J] |
} H

Figura 3.16: Um possivel modelo de um plano projetivo de ordem trés

Esta informagdo pode ser resumida na tabela 3.1.

AEREHREBEREREE
RICIQAIIDIA IO x0T =
THIT|I<T|ITIR|A|IR|IDIDIAIRIN| Y
A | x| x| x| x

B | x X | x| x

C X x | x

D X X X X

E | x X X | x
F | x X X
G X x | x

H X X | X
I X X X X
J X X X

K X | x X

L X X X X

M X X | x X

Tabela 3.1: Tabela de incidéncia

A construgido do modelo desta forma verifica todos os axiomas.

Observemos um fenémeno semelhante ao que aconteceu no modelo apre-
sentado para o plano projetivo de ordem dois. Se no modelo anterior, que cons-
truimos para o plano projetivo de ordem trés, retirarmos uma reta e os seus
pontos, vamos obter um modelo que satisfaz o sistema axiomético da geome-
tria dos nove pontos e doze retas. Por exemplo, e sem perda de generalidade,

71



se retiramos a reta I F'M N e consequentemente os pontos I, I, M e N. Vamos
obter um outro modelo formado pelos pontos A4, B, C, D, E, G, J, Le K e pelas
retas ABE, AKL, AGC, AJD, BGJ, BDL, CBK,CDE,CJL, DGK, EKJ e
EGL (fig. 3.17).

Figura 3.17

Sera que existem planos projetivos de todas as ordens?

Podemos ver através das construgdes anteriores que existem os planos pro-
jetivos de ordem dois e trés. Para nos ajudar a obter resposta a questido anterior
teremos de recorrer aos teoremas seguintes. Estes teoremas néo serdo demons-
trados, pois a sua demonstragao ndo faz parte do ambito deste trabalho. O pri-
meiro é consequéncia da existéncia de corpos finitos de ordem ¢, onde ¢ = pk,
para algum primo p. Uma descri¢do da construcdo destes planos projetivos
pode ser encontrada no capitulo II do livro [HP73].

Teorema 3.1.14. Existe um plano projetivo de ordem q para cada poténcia de primo q.

O teorema seguinte, em sentido contrério, dé-nos valores de n para os quais
nao existe um plano projetivo de ordem n [HP73, capitulo III, teorema 3.6].

Teorema 3.1.15 (Teorema de Bruck-Ryser). Seja n um niimero inteiro positivo. Se
n =1 ou 2 (mod4), e ndo é a soma de dois quadrados, entdo ndo existe plano projetivo
de ordem n.

Consideremos os planos projetivos de ordem menor ou igual a 25. Apli-
cando o teorema 3.1.14, verificamos que existem os planos projetivos de ordem
2,3,4,5,7,8,9, 11, 13, 16, 17, 19, 23 e 25. Em relagdo as restantes possiveis
ordens vamos ver se satisfazem o teorema 3.1.15 e chegamos a conclusdo de
que ndo existem os planos projetivos de ordem 6, 14, 21 e 22. Sobre os planos
projetivos de ordem 10, 12, 15, 18, 20 e 24 estes dois teoremas nada nos dizem.
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3.2 Quadrados latinos

3.2 Quadrados latinos

Na presente secgdo iremos mostrar uma conexao entre planos projetivos finitos
e quadrados latinos. Veremos a existéncia de uma equivaléncia entre planos
projetivos de uma dada ordem e a existéncia de um determinado conjunto de
quadrados latinos da mesma ordem, a que chamamos conjunto completo de
quadrados latinos ortogonais dois a dois. Para ilustrar esta equivaléncia fa-
remos detalhadamente a construcdo de um conjunto de quadrados latinos a
partir de um plano projetivo e vice-versa. Para compreendermos melhor esta
construgdo, vamos comecar por definir quadrados latinos e quadrados latinos
ortogonais dois a dois, dando um exemplo apds cada definigao.

Definigdo 3.2.1. Um quadrado latino de ordem n é uma matriz n x n que satisfaz as
seguintes propriedades:

o todas as entradas sdo niimeros inteiros entre 1 e n;

o em cada uma das linhas e das colunas ndo existem niimeros repetidos.

Exemplo 3.2.2. Quadrado latino de ordem cinco.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Definigdo 3.2.3. Sejam S = [s;;| e T = [t;;] dois quadrados latinos de ordem n.
Dizemos que S e T sdo ortogonais se os pares ordenados (sij,t,-j) paral <14, <n,
forem todos distintos.

Exemplo 3.2.4. Quadrados latinos ortogonais dois a dois de ordem cinco.

1 2 3 4 5 2 41 3 5
2 3 4 5 1 3 5 2 4 1
3 4 5 1 2 4 1 3 5 2
4 5 1 2 3 5 2 4 1 3
51 2 3 4 1 3 5 2 4

Uma forma simples de visualizar a definigdo é colocar o segundo quadrado
ligeiramente sobreposto por cima do primeiro quadrado como podemos ver a

seguir.

12 24 31 43 55
23 35 42 54 11
34 41 53 15 22
45 52 14 21 33
51 13 25 32
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De seguida, enunciaremos um resultado que nos indica um majorante para
o ntimero de quadrados latinos ortogonais dois a dois de ordem n > 3.

Teorema 3.2.5. Sejat > 1 um niimero natural e suponhamos que existe um conjunto
de t quadrados latinos ortogonais dois a dois de ordem n > 3. Entdot <n — 1.

Demonstracdo:

Seja {s1, s2,. .., s¢} um conjunto de quadrados latinos ortogonais dois a dois,
dado. Suponhamos, sem perda de generalidade, que na primeira linha de cada
quadrado latino os elementos estdo ordenados de 1 a . Consideremos ainda, as
t entradas que se encontram na posi¢do (2, 1). Estas t entradas sdo distintas, caso
contrario contradiz a defini¢do 3.2.3. Nenhuma destas entradas pode ser igual
al, de acordo com a definigdo 3.2.1, pois 1 é o elemento da posicéo (1,1). Entdo
para as t entradas que se encontram na posicéo (2, 1) s6 existem no maximo n—1
possibilidades. Assimt <n — 1. O

Se no teorema 325 ¢ = n — 1, entdo o conjunto {s1, s,...,s¢} diz-se um
conjunto completo de quadrados latinos ortogonais dois a dois.

Exemplo 3.2.6. Conjunto completo de quadrados latinos ortogonais dois a dois
de ordem cinco.

1 2 3 4 5 2 4 1 3 5
2 3 4 5 1 3 5 2 4 1
3 4 5 1 2 4 1 3 5 2
4 5 1 2 3 5 2 4 1 3
5 1 2 3 4 1 3 5 2 4
31 4 2 5 4 3 2 1 5
4 2 5 3 1 5 4 3 2 1
5 3 1 4 2 1 5 4 3 2
1 4 2 5 3 2 1 5 4 3
2 5 3 1 4 3 21 5 4

Apresentaremos seguidamente um resultado que estabelece uma relagéao
entre planos projetivos e quadrados latinos da mesma ordem.

Teorema 3.2.7. Sejan > 3. Existe um plano projetivo de ordem n se e s6 se existir
um conjunto completo de n — 1 quadrados latinos ortogonais dois a dois de ordem n.

Nao vamos apresentar aqui a demonstracdo do teorema, porque sai do dm-
bito deste trabalho. A sua demonstragdo encontra-se no livro [Rys63] de Her-
bert John Ryser (capitulo 7, teorema 4.1 — ver também o teorema 1.3). Mas para
melhor compreender o teorema vamos apresentar a construgdo dum conjunto
completo de dois quadrados latinos ortogonais de ordem trés a partir do plano
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3.2 Quadrados latinos

projetivo de ordem trés, que construimos na secgdo 3.1 deste capitulo. Posteri-
ormente faremos o inverso: partiremos de um conjunto completo de quadrados
latinos ortogonais de ordem trés (diferente do anterior) e construimos um plano
projetivo de ordem trés. Para fazer estas constru¢des baseamo-nos na demons-
tragdo do teorema anterior e na demostragido do teorema 1.3 que se encontra na
mesma secgdo e capitulo do livro do teorema anterior.

O plano projetivo de ordem trés, do exemplo 3.1.13 secgdo 3.1 deste capitulo,
é constituido pelos pontos: A, B,C, D, E, F,G,H,I, J, K, L e M e pelas re-
tas: ABEF, ACGH,ADIJ,AKLM,BCIK,BDHL, BGJM,CDEM,CFJL,
DFGK, EGIL, EHJK, FHIM. Das retas anteriores escolhemos uma qual-
quer, por exemplo a reta ABEF, a que chamaremos r. Sabemos que por cada
um dos pontos da reta r passam quatro retas distintas, a prépria reta e outras
trés. Numeremos cada uma dessas trés retas de 1 a 3, de forma arbitraria. Por
exemplo, todas as retas que incidem no ponto A e distintas da reta r poderdo
ser numeradas da seguinte forma: ACGH terd o nimero 1, ADIJ, o nimero
2e AKLM, o niimero 3. Procederemos de forma andloga para todos os outros
pontos da reta r. Nos quadros seguintes podemos ver uma forma de numerar
as trés retas distintas de r que incidem em cada um dos pontos 4, B, E e F.

ACGH 1 BCIK 1 CDEM 1 CFJL 1
ADIJ 2 BDHL 2 EGIL 2 DFGK 2
AKLM 3 BGJM 3 EHJK 3 FHIM 3

Seguidamente construimos uma tabela de dupla entrada na qual colocare-
mos no cabegalho os pontos da reta r e numa coluna auxiliar todos os pontos
que ndo pertencem a reta r, em ambos 0s casos optamos por colocar os pontos
por ordem alfabética. Tendo em consideragdo a numeragao anteriormente atri-
buida a cada reta, preenchemos cada entrada da tabela colocando o namero da
reta, que incide nos pontos que se encontram em linha e em coluna. Por exem-
plo na entrada (1, 1) iremos escrever o nimero da reta que incide nos pontos A
e C, ou seja 1, na entrada (1, 2) escreveremos o niimero da reta que incide nos
pontos B e C, que é também 1. Faremos um raciocinio andlogo para o preen-
chimento das restantes entradas da tabela.

A|B|E|F

e x|~ ~mo|gla
WIWI WIN N = =] N =
WIN| =W =N w =
IN| WP N W[N] ==
Wr N =W WwW] NN =
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A partir desta tabela construimos uma matriz N, da qual constam somente
os ntimeros da tabela.

[1 1 1 1]
2 21 2
1 3 2 2
1 2 3 3
N=1|21 2 3
2 331
31 3 2
3 2 21
13 3 1 3]

Na matriz anterior vamos fazer permutagdes de linhas de modo a que as en-
tradas das duas primeiras colunas sejam os pares ordenados (1, 2), (1,3), (2,1),
(2,2),(2,3),(3,1), (3,2),(3,3), por esta ordem. Com este objetivo vamos comecar
por permutar a segunda com a quarta linha.

T 1 1 17
1 23 3
13 2 2
221 2
212 3
23 31
313 2
3221

3 3 1 3]

Finalmente permutamos a quarta linha com a quinta linha. A matriz que
obtivemos fazendo as permutacées vamos chamar W.

1 1 1 1]
1 23 3
1 3 2 2
21 2 3
W=12 21 2
2 3 31
31 3 2
3 2 21
3 3 1 3]

Com a terceira e quarta colunas da matriz I vamos construir duas matrizes
3 x 3, S e Q. Para construir a matriz S consideramos a coluna trés. A primeira
linha desta matriz é formada pelas primeiras trés entradas da coluna trés, a
segunda linha pelas trés entradas seguintes e a terceira linha pelas trés tltimas
entradas, como podemos ver:
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3.2 Quadrados latinos

1 3 2
S=1(2 1 3
3 2

—

Para construir a matriz ), seguimos um raciocinio anélogo ao anterior, mas
utilizaremos a quarta coluna da matriz W.

1 3 2
Q=13 2 1
213

Observemos que as matrizes S e () sdo quadrados latinos de ordem trés.

1
2
3

N — W
—_ W N

1
3
2

— N W
W = N

Podemos facilmente verificar que estes dois quadrados latinos sdo ortogo-
nais. E de salientar que se utilizdssemos as colunas um e dois da matriz W e
fizéssemos 0 mesmo processo que fizemos para as colunas trés e quatro ndo iria-
mos obter quadrados latinos. No caso de utilizarmos a coluna um teriamos os
niimeros repetidos em linha e no caso de utilizarmos a coluna dois terfamos os
niimeros repetidos em coluna, nio satisfazendo assim a definigdo de quadrado
latino.

Vejamos o porqué de obter a partir de um plano projetivode ordem n = 3 um
conjunto de quadrados latinos ortogonais também de ordem n = 3. Sabemos
que num plano projetivo de ordem n = 3, segundo o teorema 3.1.10, em cada
ponto incidem exatamente quatro retas. Para construir a tabela escolheu-se, de
forma arbitrdria, uma das treze retas (foi escolhida a reta ABEF, mas poderia
ter sido outra qualquer). Como em cada ponto dessa reta incidem outras trés
retas, numeramos estas tltimas, também de forma arbitraria, com os nimeros 1,
2 e 3. Esta forma de construgdo obriga a que nas entradas da tabela s6 aparecam
os nameros 1, 2 e 3. Sabemos também, que num plano projetivo de ordemn = 3,
em cada reta incidem exatamente quatro pontos, de acordo com teorema 3.1.9,
o que pode ser observado na tabela. Vemos que, em cada coluna existem trés
entradas com o ntamero 1, trés com o niimero 2 e trés com o nimero 3. Em
cada coluna, as trés entradas com o nimero 1 correspondem a trés pontos de
uma mesma reta que passa também pelo ponto do cabecalho dessa coluna. O
mesmo acontece para as entradas com os ntimeros 2 e 3. Reparemos ainda que,
ao escolher duas quaisquer colunas da tabela, obtemos uma matriz com nove
linhas e duas colunas; os pares ordenados que podemos ver em cada uma das
nove linhas sdo todos distintos. Isto fica a dever-se ao facto de duas retas terem
exatamente um ponto em comum, de acordo com teorema 3.1.3. De acordo
com o método de construcio fizeram-se permutac¢ées na matriz N de modo a
obter uma matriz W em que nas duas primeiras colunas se obtiveram os pares
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ordenados (1, 1), (1,2),(1,3), ..., (3,3). A disposicdo das entradas da primeira
coluna da matriz W implica que as matrizes S e () ndo tenham duas entradas
iguais em linha, pois os pares ordenados ndo se repetem em quaisquer duas
colunas da matriz W. Pela mesma razdo, a disposigao das entradas da segunda
coluna da matriz W implica que as matrizes S e () ndo tenham duas entradas
iguais em coluna. Assim a matriz S e ) sdo quadrados latinos. Estes quadrados
latinos sdo ortogonais porque quando sobrepostos obtemos pares ordenados
distintos.

Como dissemos anteriormente, vamos fazer o processo inverso. Partiremos
de dois quadrados latinos ortogonais de ordem n = 3, diferentes dos anteriores,
e chegaremos a um plano projetivo de ordem n = 3. Consideremos os seguintes
quadrados latinos ortogonais:

N W =
W =N
—_ N W
W =N
N W
= N W

A partir destes podemos considerar as seguintes matrizes:

1 2 3 2 1 3
V=13 1 2], Z=1{1 3 2
2 31 3 21

Consideremos ainda as matrizes:

1 11 1 2 3
R=12 2 2f, T'=11 2 3
3 3 3 1 2 3

Com as matrizes R, T, V e Z vamos construir uma matriz U. Para construir
a primeira coluna da matriz U vamos considerar a matriz R, nas primeiras trés
entradas colocamos os nlimeros que constam da primeira linha da matriz R, nas
trés entradas seguintes colocamos os niimeros que constam da segunda linha
da matriz e nas trés tltimas entradas os nimeros que constam da terceira linha
da matriz R. Para construir a segunda, terceira e quarta colunas da matriz U
fazemos o processo andlogo ao anterior, mas considerando as matrizes T, U e
Z, respetivamente.

1 1 1 2]
1 2 2 1
1 3 3 3
21 31
U=1(2 21 3
2 3 2 2
31 2 3
3 2 3 2
3 3 1 1]
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3.2 Quadrados latinos

Nota 3.2.8. Notemos que se na matriz anterior escolhermos duas quaisquer
colunas obtemos todos os pares ordenados que ¢ possivel fazer com os niimeros
1, 2 e 3, sem repeticdo. Para justificar a afirmacdo anterior consideremos trés
possibilidades:

1. escolher a primeira coluna e outra coluna qualquer;
2. escolher a segunda e a terceira ou quarta colunas;
3. escolher as duas tltimas colunas.

1. se escolhemos a primeira coluna, que é construida a partir da matriz R,
em que cada linha tem 0 mesmo ntimero (a primeira linha tem o nimero 1, a
segunda linha tem o niimero 2 e terceira linha tem o nimero 3) e a segunda
coluna que é construida a partir da matriz T', na qual os niimeros 1, 2 e 3 ndo se
repetem nas linhas, mas nas colunas, portanto os pares ordenados obtidos por
entradas destas duas colunas véo ser sempre distintos. Escolhendo a primeira
coluna e a terceira ou a primeira e a quarta colunas também vamos obter sempre
pares ordenados distintos, pois a terceira e a quarta colunas sdo construidas a
partir das matrizes V' e Z, respetivamente, que sdo quadrados latinos formados
com os niimeros 1,2 e 3.

2. se escolhemos a segunda e a terceira ou quarta colunas, aparecem todos
os pares ordenados, pois como foi dito anteriormente, a segunda coluna é cons-
truida a partir da matriz T que tem 0 mesmo namero em cada coluna e a terceira
ou quarta colunas sdo construidas a partir das matrizes V' e Z, respetivamente,
que sdo quadrados latinos.

3. se escolhermos as duas tultimas colunas aparecem todos os pares ordena-
dos, pois estas sdo construidas a partir de quadrados latinos ortogonais.

Com base na matriz U vamos construir uma tabela na qual colocaremos no
cabegalho de cada coluna os pontos A, B, C e D, e numa coluna auxiliar os
pontos E, F, G, H, 1, J, L, M e N, a escolha dos pontos foi arbitréria e em
ambos os casos optdmos por colocar os pontos por ordem alfabética.

A!B|C|D
El1;1}11]2
Fl12(2]1
G|1([3]|3(3
HI2|1|3]|1
I {2)12]|1]3
J1213(2)2
L|3}|1}2]3
M 3 |2]3]|2
N|[3]|3]1]1

Os pontos do plano projetivo de ordem trés sdo aqueles que aparecem na
tabela: A, B,C, D, E, F,G, H,I,J, L, M e N. Vamos construir as retas do
mesmo plano. Comegamos por construir uma reta incidente nos pontos que se
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encontram no cabecalho da tabela, que denominamos por ABCD. Para cons-
truir as restantes retas procederemos da seguinte forma: consideremos a pri-
meira coluna. Construimos uma reta incidente no ponto A e em todos os pon-
tos a que corresponde uma entrada 1, como estes sdo E, F' e G denominamos
a reta por AEFG. No ponto A e em todos os pontos a que corresponde uma
entrada 2 construimos a reta que denominamos por AHI.J. Finalmente cons-
truimos a reta que incide no ponto A e em todos os pontos a que corresponde
uma entrada 3, que denominamos por ALMN. Consideremos cada uma das
outras colunas e por processo andlogo ao anterior construimos as restantes re-
tas. As retas que sdo obtidas com base nesta tabela sdo: ABCD, AEFG, AHIJ,
ALMN, BEHL, BFIM, BGJN,CEIN,CFJL, CGHM, DFHN, DEJM e
DGIL. O plano projetivo de ordem n = 3 é formado pelos treze pontos e pelas
treze retas atras indicados.

Vamos seguidamente verificar que este plano que acabamos de construir é
um plano projetivo e satisfaz os axiomas Hi, H;, H3 e Hy.

Axioma H;: Existem pelo menos quatro pontos ndo colineares trés a trés.

Para verificar o axioma escolhemos quaisquer duas colunas, por exemplo a
segunda e terceira colunas, a que correspondem respetivamente os pontos B e
C. Seguidamente escolhemos duas linhas em que as respetivas entradas corres-
pondam a pares ordenados em que a primeira e a segunda coordenada sejam
diferentes, de modo a conseguir obter sempre quatro pontos néo colineares trés
a trés. Por exemplo, escolhendo as linhas que correspondem aos pontos E e F,
obtemos os pares ordenados (1,1) e (2,2). Os pontos B, C e F nédo incidem na
mesma reta e os pontos C, E e F' também néo incidem na mesma reta, devido
ao processo de construgao das retas. A tnica reta que incide nos pontos B e C
é areta ABC D, portanto nenhum dos pontos E ou F é colinear com B e C.

Axioma Hj: Existe pelo menos uma reta incidente com exatamente n + 1
pontos distintos.

Como n = 3 podemos reescrever o axioma do seguinte modo: existe pelo
menos uma reta incidente com exatamente quatro pontos distintos.

A reta ABCD que incide nos pontos que estdo no cabegalho tem quatro
pontos, logo o axioma é verificado.

Axioma Hj: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Para verificar o axioma vamos tomar dois pontos distintos, quaisquer e te-
mos trés casos a considerar:

1. os dois pontos estdo no cabecatho;
2. um dos pontos estd no cabecalho e o outro ponto esta na coluna auxiliar;
3. os dois pontos estdo na coluna auxiliar.

Casol: se os dois pontos estdo no cabecalho incide neles a reta ABC D e ndo
incide mais nenhuma de acordo com o método de construgio.
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3.2 Quadrados latinos

Caso2: se um dos pontos estd no cabegalho e o outro ponto estd na coluna
auxiliar, o método de construgdo garante que s6 passa uma reta pelo ponto que
estd no cabegalho e pelos trés pontos da respetiva coluna que tenham a mesma
entrada, logo o axioma é verificado.

Caso 3: suponhamos finalmente que os dois pontos estdo na coluna auxiliar,
e observemos o seguinte:

Nota 3.2.9. Reparemos que:

e cada linha da matriz U é constituida pelas entradas de uma determinada
posigdo das matrizes R, T, V e Z. De facto,
'ri1 tnn vin 2]
rz tiz vz 212
ri3 ti3 vz 213
i v 2
U= |rn tn vn 22
T3tz V3 23
T3t v 231
r2 i Uz 23
|33 f33 vz 233

Por exemplo, a linha da tabela correspondente ao ponto J tem as entradas
na posicao (2, 3) destas matrizes, 733 =2, tp3 =3, 123 =2 € 223 = 2.

e Dois pontos da coluna auxiliar incidem numa tinica reta se e s6 se existir
uma Unica coluna na tabela em que as entradas sejam iguais. Por exemplo, os
pontos J e M incidem numa tnica reta porque na tltima coluna da tabela tém
entrada 2, correspondente a reta DEJM.

Separemos ainda nos dois casos seguintes:

a. os dois pontos tém a entrada da primeira coluna igual;

b. os dois pontos tém a entrada da primeira coluna diferente.

Caso a: se os dois pontos tém a entrada da primeira coluna igual, existe
uma tinica reta incidente no ponto A e nesses dois pontos. Este facto deve-se ao
método utilizado na construcdo das retas. Dada a distribui¢do das entradas da
matriz R, sabemos que os pontos correspondem em todas as matrizes a entra-
das da mesma linha. Como nas matrizes T', V e Z ndo ha repeti¢do de entradas
na mesma linha sabemos que a reta € anica.

Caso b: se os dois pontos tém a entrada da primeira coluna diferente, entao
temos novamente dois casos a considerar.

b1. os dois pontos tém a entrada da segunda coluna igual;

b2. os dois pontos tém a entrada da segunda coluna diferente.
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Caso b1: como os dois pontos tém a entrada da segunda coluna igual, po-
demos concluir que existe uma reta que passa pelo ponto B e por esses dois
pontos e que as entradas, da tabela, destes dois pontos se encontram na mesma
coluna das matrizes R, T, V e Z. Nao existem mais retas, pois por hipétese os
pontos tém na tabela a entrada da primeira coluna diferente e a terceira e quarta
coluna da tabela corresponde as matrizes V' e Z que sdo quadrados latinos or-
togonais e as entradas destes dois pontos encontra-se na mesma coluna destas
matrizes, logo a terceira e quarta coluna da tabela tém de ser diferentes.

Caso b2: se os dois pontos tém a entrada da segunda coluna diferente temos
também de considerar dois casos.

b2.1. os dois pontos tém a entrada da terceira coluna igual;

b2.2. os dois pontos tém as entradas da terceira coluna diferentes.

Caso b2.1: se os dois pontos tém a entrada da terceira coluna igual, entdo
existe uma reta incidente no ponto C e nesses dois pontos. Por hipétese em
cada uma das duas primeiras colunas as entradas sdo diferentes. As entradas
da terceira e da quarta coluna também sdo diferentes, pois sdo obtidas a par-
tir de quadrados latinos ortogonais, logo se fossem iguais, ao sobrepormos as
matrizes irfamos ter pares ordenados iguais, o que contradiria a definigdo de
quadrados latinos ortogonais. Portanto a reta incidente nos dois pontos é tinica.

Caso b2.2: se os dois pontos tém as entradas da terceira coluna diferentes,
entdo a entrada da quarta coluna tem de ser igual. Vejamos porqué. Consi-
deremos dois pontos, um de entrada (3, j) e outro de entrada (¢/, /). Sabemos
que as entradas dos dois pontos da primeira coluna da tabela sdo diferentes,
o que quer dizer que na matriz R essas entradas estio em linhas diferentes
(isto é,sery; # 1y entdo i # i'). Também sabemos que as entradas dos dois
pontos da segunda coluna da tabela sdo diferentes, logo essas entradas na ma-
triz T estdo em colunas diferentes ( isto é, se t;; # ti;- entdo j # j'). Como as
entradas da terceira coluna dos pontos também sio diferentes, as entradas v;; e
vy sdo distintas. A matriz V' é um quadrado latino e portanto a entrada v;; tem
de ser diferente das entradas v;;: € vy/;. Analogamente a entrada v, ;- tem de ser
diferente das entradas v;;- e v;-;. Como as entradas sdo compostas apenas pe-
los niimeros 1, 2 ou 3 a tnica forma de isto acontecer é termos uma igualdade
nas entradas v;;: e vy;. As matrizes V e Z sdo quadrados latinos ortogonais,
assim os pares ordenados (v;jr, 2;5:) € (virj, ziv;) sdo distintos. Como os pares
ordenados anteriores sdo distintos e as entradas v;;- e vy; sdo iguais, entdo as
entradas z; ; e z;;também sado distintas. Mas sendo a matriz Z um quadrado
latino vemos analogamente que as entradas z;; e 2;+;» sdo iguais. Portanto as
entradas dos pontos da quarta coluna da tabela séo iguais. Podemos concluir
que existe uma unica reta incidente nesses dois pontos.

Axioma Hy: Dadas duas retas distintas, existe pelo menos um ponto inci-
dente com ambas.

Para verificar este axioma tomemos quaisquer duas retas e consideremos
dois casos:
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3.3 Planos Projetivos Finitos e Cédigos

1. uma das retas é a reta ABC D e uma outra reta distinta desta;

2. as duas retas sdo distintas da reta ABCD.

Caso 1: areta ABC D é areta incidente nos pontos A, B, C e D, do cabegalho
da tabela. Qualquer uma das outras retas, de acordo com o método de constru-
¢do, incide num ponto do cabecalho e nos trés pontos dessa coluna que tenham
uma mesma entrada. Assim a reta ABC D e qualquer outra reta tém um ponto
em comum, que é o ponto que estd no cabegalho. Por exemplo, se considerar-
mos a segunda coluna e todos os pontos que tenham entrada 3 obtemos a reta
BGJN. Esta reta e areta ABCD tém o ponto B em comum.

Caso 2: se considerarmos duas retas distintas da reta ABC D, vamos ter dois
casos:

a. as duas retas foram construidas a partir da mesma coluna;
b. as duas retas foram construidas a partir de diferentes colunas.

Caso a: se as retas foram construidas a partir da mesma coluna incidem
ambas no ponto que esta no cabegalho dessa coluna, de acordo com o método
de construgdo. Por exemplo, se considerarmos a terceira coluna e uma reta de
entrada 1 e uma reta de entrada 2, temos as retas CEIN e CF JL, que se inter-
setam no ponto C.

Caso b: se as duas retas foram construidas a partir de diferentes colunas,
uma das retas corresponde a uma entrada « numa coluna e a outra reta a uma
entrada y na outra coluna. Portanto o ponto de intersegao é o ponto da coluna
auxiliar ao qual corresponde, nas duas colunas, o par ordenado (z, y) (de acordo
com a nota 3.2.8 este par ordenado aparece sempre e € tinico). Por exemplo,
se considerarmos uma reta da primeira coluna com entrada 1 e uma reta da
quarta coluna com entrada 3, o ponto de interseccdo destas retas é o ponto ao
qual corresponde o par ordenado (1, 3), ou seja o ponto G.

3.3 Planos Projetivos Finitos e Cédigos

A teoria dos c6digos dedica-se a detetar e a corrigir erros que sdo introduzidos
quando sdo transmitidas as mensagens. Tornou-se numa importante érea de
pesquisa utilizando resultados da geometria projetiva, teoria dos grupos, teoria
dos corpos finitos, entre outras.

Nesta secgdo iremos partir dum plano projetivo e obter um cédigo. Iremos
trabalhar com c6digos bindrios, ou seja, conjuntos de sequéncias de zeros e uns
com um dado comprimento. Alguns c6digos tém estrutura de espago vetorial,
como € o caso dos que vamos trabalhar, e podem ser definidos como vetores. A
cada sequéncia chamamos palavra de cédigo.

Os c6digos bindrios sdo os c6digos com mais aplicagdes e consequentemente
os mais utilizados.
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Vamos introduzir algumas defini¢oes da teoria dos cddigos que servirdo de
base & construgdo de um cédigo a partir de um plano projetivo.

Definicdo 3.3.1. Um corpo é um conjunto F munido de duas operacdes bindrias, a
adicdo e a multiplicacdo, para o qual se verificam os sequintes axiomas.
Sejam a,b, c € F quaisquer. Entdo:

e a+be Feaxbe F(Féfechado para a adigiio e para a multiplicagdo);
e a+b=>b+aeaxb=bx a(propriedade comutativa);
e (a+b)+c=a+(b+c)e(a xb) x c=a x (bx c){propriedade associativa);

e a x (b+c)=a xb+a x c(propriedade distributiva da multiplicacdo em relacdo
d adicdo)

e existem elementos distintos 0 e 1 € F tais que, para qualquer a € F,0+a =a
(elemento neutro da adi¢do), 1a = a (elemento neutro para a multiplicagdo);

o existe um elemento —a € F tal que a + (—a) = 0 (simétrico);

e sea # 0, entdo existe um elemento a ' € F tal que a x a ! = 1 (inverso).

Alguns exemplos de corpos que sdo muito conhecidos e trabalhados em ma-
temética sdo o conjunto dos racionais Q, conjunto dos reais R e o conjunto dos
complexos C.

Por exemplo o conjunto dos naturais N ndo é um corpo porque nem todos os
nimeros tém simétrico, como é o caso do niimero 2. O conjunto Z também ndo
€ um corpo, pois nem todos os ntimeros tém inverso, como exemplo o nimero
3.

Definicio 3.3.2. Designamos por F o conjunto {0, 1} munido pelas operagoes de adi-
¢do e multiplicacdo definidas pelas tabelas sequintes.

_ O+
— OO
D =
— QX
O O Q0
[

Podemos verificar que o conjunto F; satisfaz todas as condi¢es da definigdo
3.3.1, portanto é um corpo. Este corpo é menos conhecido, mas é extremamente
atil na teoria dos c6digos.

Definicdo 3.3.3. Seja F' um corpo. Um espago vetorial (ou espago linear) sobre F é
um conjunto V (ndo vazio) munido de duas operagdes, uma a que chamamos adi¢do de
vetores e outra multiplicacdo por escalares (elementos de F), satisfazendo as seguintes
condigdes:

Sejam u,v,w € V e A, i € F, quaisquer. Entio:
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3.3 Planos Projetivos Finitos e Cédigos

e yut+tveV;

o (u+v)+w=u+(v+w)

e ut+tv=v+u

o existe um elemento 0 € V com a propriedade O + v = v, para qualquer v € V;
e existe um elemento de V chamado —u tal que u + (—u) = 0;

e \wevV,;

o AMu+v)=Au+Av,(A+ p)u=Au+ py;

o (Ap)u = Alpu)

o se 1 ¢ o elemento neutro para a multiplicacio em F, entio 1u = u.

Um espago vetorial conhecido é R?, munido das operagdes usuais. Em geral
R™ também é um espaco vetorial sobre R pois satisfaz todas as condiges acima
definidas. Isto é valido para qualquer corpo F ou seja, F™ é um espaco vetorial
sobre F. No contexto da teoria dos c6digos, que nos interessa, vamos considerar
o espaco vetorial F5".

Definicdo 3.3.4. Um subconjunto C (ndo vazio) de um espago vetorial V sobre F é
um subespago vetorial de V' se e s se satisfaz a condigio:

seu,v € Cel pu€ Fentido \u+uv e C.

Exemplo 3.3.5. Consideremos o espago vetorial F5>. Podemos verificar que,
como conjunto,

F*={(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,1,0),(0,1,1),(1,0,1),(1, 1, )} .
Consideremos o seguinte subconjunto do espaco vetorial F>’:

C ={(,0,0),(0,0,1),(0,1,0),(0,1,1)} .

Facilmente verificamos que o conjunto C satisfaz a defini¢do 3.3.4 e portanto
é um subespaco vetorial de F»°.

Definic¢do 3.3.6. Seja V um espago vetorial sobre F' e sejam vy, ..., v, vetores de V.
Dizemos que um vetor v € V' é combinagdo linear dos vetores vy, ..., v, se existem
escalares Ay, ..., A\, € F tais que

V= MU+ AU

Defini¢do 3.3.7. Seja V' um espago vetorial sobre F. Um conjunto de vetores
{vi,...,v.} em V é linearmente independente se para quaisquer A1, ..., A\, € F,

AMvr 4o+ A0, =0=> A==\ =0.
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Exemplo 3.3.8. O conjunto de vetores {(0,0,1),(0,1,0),(0,1,1)} néo ¢é linear-
mente independente, pois o terceiro vetor é obtido a partir da soma dos dois
primeiros. Portanto podemos escrever

1x(0,0,1)+1 % (0,1,0)+ 1 x (0,1,1) = (0,0,0).

Por outro lado, podemos ver que o conjunto de vetores
{(0,0,1),(0,1,0),(0,0,1)} é linearmente independente.

Definicdo 3.3.9. Seja V um espago vetorial sobre F e seja S = {vi,va,..., v} um
subconjunto de V ndo vazio. O espago vetorial gerado por S é definido por:

(S) ={ M1+ Xva+ -+ Mgt Ay, A € F )L

Definicio 3.3.10. Seja V um espaco vetorial sobre F.  Um subconjunto
B = {v,vy,...,v} de V édesignado uma base de V se V = (B) e B ¢ linearmente
independente.

Exemplo 3.3.11. Consideremos o subconjunto B = {(1,0,0),(0,1,0),(0,0,1)}
de F»3. Este conjunto de vetores gera o espaco vetorial F3 e, como ja foi referido
atras, é linearmente independente, logo é uma base deste espaco vetorial.

Definicdo 3.3.12. A dimensdo de um espago vetorial V' é o niimero de elementos de
uma base.

Definicdo 3.3.13. Um cédigo linear bindrio, de comprimento n, é um subespagco veto-
rial de F>™.

Definicao 3.3.14. Uma matriz geradora G para um codigo linear C é uma matriz cujas
linhas formam uma base para C.

Definicdo 3.3.15. Seja m um plano projetivo finito. Um cédigo bindrio C associado a
T é um espago vetorial sobre F, gerado pelas linhas de uma matriz de incidéncia de .

Iremos exemplificar como a partir de um plano projetivo finito podemos ob-
ter um cédigo. Comecemos por introduzir a definicdo de matriz de incidéncia.

Definigdo 3.3.16. Seja m um plano projetivo finito de ordem n. Uma matriz de in-
cidéncia A = |a;;] de m é uma matriz (n® + n + 1) x (n® + n + 1), onde as retas
sdo representadas pelas colunas e os pontos sdo representados linhas, de tal forma que
a;; = 1 se o ponto correspondente d linha i pertence 4 reta correspondente d coluna j;
caso contrdrio a;; = 0.

Consideremos a tabela de incidéncia construida no plano projetivo de or-
dem n = 2, dada no exemplo 3.1.12 da secgdo 3.1 deste capitulo. As retas estdo
representadas no cabecalho e os pontos estdo representados na coluna auxiliar.
Nesta, o nimero 1 significa que o ponto pertence a reta e o ntimero 0 significa
que o ponto ndo pertence a reta.
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3.3 Planos Projetivos Finitos e C6digos

ABF | ACE | ADG | BCG | BDE | CDF | EFG
A 1 1 1 0 0 0 0
B 1 0 0 1 1 0 0
C 0 1 0 1 0 1 0
D 0 0 1 0 1 1 0
E 0 1 0 0 1 0 1
F 1 0 0 0 0 1 1
G 0 0 1 1 0 0 1

A cada linha da tabela podemos fazer corresponder um vetor. Assim, por
exemplo, o ponto A pode ser representado pelo vetor (1,1,1,0,0,0,0). Cada
vetor € formado por 7 componentes, cada uma das quais é 0 ou 1. Cada ve-
tor dado, por cada um dos sete pontos, tem exatamente trés componentes de
valor 1, isto acontece porque cada reta do plano projetivo de ordem dois tem
exatamente trés pontos.

A partir da tabela e de acordo com a definigido 3.3.16 obtemos a seguinte
matriz de incidéncia.

1110000
1001100
0101010

My={0 010110
0100101
1000011

001100 1

Procuramos, de acordo com a defini¢do 3.3.15, o cédigo C, associado ao
plano projetivo de ordem dois, gerado pelas linhas da matriz M,. Podemos
observar que as linhas da matriz M; néo sdo linearmente independentes, por
exemplo, a linha 1 é igual & soma das linhas 2, 3 e 4. Por uma questdo de simpli-
cidade procuramos uma matriz G, geradora do c6digo C,, cujas linhas formam
uma base de 5. Para obter a matriz G, realizaremos operagdes elementares en-
tre as linhas da matriz M;. Por exemplo a operacdo Ly + Lg — L significa que
adicionamos as linhas 2 e 6 da matriz M, e vamos colocar o resultado na linha
2 da matriz seguinte. Como estamos a trabalhar em F; utilizamos as operagdes
da definigdo 3.3.2, assim (1001100) + (1000011) = (0001111).

Vamos explicar mais detalhadamente como obter a matriz G, a partir da
matriz M,. Comecamos por realizar sucessivamente as opera¢des na matriz
Mz:

Le L4 L]

L5 © Ly

Ly & Lj

e obtemos a matriz seguinte:
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1000011
0100101
0010110
0101010
1001100
1110000

00110 0 1

Agora nesta matriz vamos realizar as operag¢des:

L4(—)L5
L7(—)L6

e obtemos a matriz:

10000 11
0100101
0010110
1001100
0101010
0011001
1110000

A partir desta dltima matriz vamos sucessivamente realizar as operac¢tes
seguintes:

Li+ L1 — Iy

Lo+ L —> L7

e obtemos a matriz:

1000011
01001011
0010110
0001111
0101010
0011001
01100 1 1

Seguidamente vamos realizar a operagéo:
L;+ L, — Ly
obtendo a matriz

10000 11
0100101
0010110
0001111
0101010
0011001
00101 1 0
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3.3 Planos Projetivos Finitos e Cédigos

Nesta tltima matriz realizamos a operacéo:
L7 + L3 — Ly

e obtemos a matriz:

1
!

—

OO O O OO
OO = QOO ~=O
O =, OO = OO
QO = =000
O OO M = =0
OO RO =
O = OO R =

Finalmente realizamos sucessivamente as operagdes:

L2+L5——->L5
L3+ Ls —> Lsg
L6+L5—)L5
L3+L5—>L6
L4+L6—)L6

e obtemos a matriz:

1000011
0100101
0010110
0001111
0000000
0000000
0 00000 O

Obtivemos uma matriz em que as trés tltimas linhas sdo nulas. As linhas
nio nulas desta matriz formam a matriz G>.

Gy =

SO O =
OO = O
o= OO
- o O O
I G =)
_ e O
—_ O e =

Nota 3.3.17. As operacdes elementares que realizdmos para obter a matriz G,
em algebra linear designam-se por método de Gauss.

Como as linhas da matriz G> formam uma base do c6digo, sabemos que o
cédigo C, gerado tem dimensao 4, de acordo com a defini¢do 3.3.12. Por esta
razdo o c6digo tem 2* = 16 palavras. As 16 palavras do c6digo sdo todas as
combinagdes lineares das linhas da matriz G,, ndo esquecendo que todas as
operacdes sdo realizadas em F3.

As 16 palavras do cédigo sao:
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_ O R R PO OR R RO =0

— O = O FR R, QOO R OO0 R OO0
=== O o = O R ORS00 OO0
== e O R OR OO0 -0 00
o= OO O OO O P RO O
—_ O - OO O R OO R PR MBE OO
R OO RRP O~ O RO R OROMMEOO

—

O cédigo C, que obtivemos é um cédigo bindrio de acordo com a defini¢ao
3.3.13.

Defini¢ao 3.3.18. 1. Sedois vetores (v, ..., vp) e (wn, ..., wy), satisfazem a con-
digdo viwy + - - - + v,wy,, = 0 dizemos que os vetores sio ortogonais.

2. O dual de um cédigo C é um cédigo C* definido por:
ct= {(v1,...,0n) € F3 :Y(wy,...,wp) € C,v1wy + -+ + vywy = 0}.

Definicdo 3.3.19. Uma matriz de paridade H para um cédigo linear C' é uma matriz
geradora para o dual do cédigo C+.

Definig¢do 3.3.20. Seja r > 2. Um codigo bindrio de comprimenton = 2" — 1, com
matriz de paridade H cujas colunas sio compostas por todos os vetores ndo nulos de
F>" é chamado um cédigo bindrio de Hamming de comprimento 2" — 1.

A matriz seguinte é um exemplo de uma matriz paridade para o cédigo
definido anteriormente:

0 001111
H=(0 110011
1 01 0101

Facilmente verificamos que as linhas desta matriz H sdo ortogonais a todas
as palavras deste codigo e de acordo com a defini¢do 3.3.19, esta ¢ uma matriz
geradora do cédigo dual.

Como as colunas de H sio todos os elementos ndo nulos de F°, por defini-
¢do este é um c6digo de Hamming. Este c6digo é conhecido como um cédigo
de Hamming (7,4), em que 7 significa o comprimento de cada palavra e 4 a
dimensdo do cédigo.
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3.3 Planos Projetivos Finitos e Cédigos

Os cédigos de Hamming sdo uma familia importante de cédigos porque
sdo particularmente eficientes quando queremos detetar e corrigir erros. Sdo
cédigos lineares que podem ser definidos sobre um corpo finito, o exemplo
que apresentamos foi um cédigo definido sobre F5.

A partir de um plano projetivo de ordem trés também se pode obter um c6-
digo, que designaremos por C3. O modo como se obtém o c6digo é semelhante
ao anterior mas existe uma diferenca que veremos mais a frente.

Consideremos a tabela de incidéncia obtida a partir do exemplo 3.1.13 da
secgdo 3.1 deste capitulo. '

HEINERENEREFEE
QIO |0
T LT (T[RRI IR|R| W&
Ajl1|1y1y1j010|0(0}j0|0}0|0O0
Bi{1{0|0l0Ofj1|1{1j0|0|0j0]|0O]O
c|oj1jo0fo0f1|(0j0|1|1|0|0]0O|O
Dl|ojoj1j0{0|1T|0O|1)0]|1]|]0]0]O0
El1|]0|0|jO|0}!O0O}|O}l1T]O0O|0O}1|1]0
F{1]0|0|j0j0j0j0l0O{21|212{0]|0]|1
G|oj1jo0jo0jO0OflOf1(0|O|1]|1]0]0O
H|0j1(0]0j0]1]|0O|O0O|O0OjO0|0|11
I|10({0j1(0j1j0|0|JO]OjO}1{0]|1
J{ofojrf04040;1y0;110]0|1|0
Kiofoflof141j0(0]0{O0|1]0]|1][0O
L|{ojo|loj1j0(1j0{0j1|0}1|0}]0
M{iojojo0f1|0j0]l1f{1|0f(0O|O0]|O}1
A partir da tabela obtemos a matriz de incidéncia.
1 1110000000 0 0]
1000111000000
0100100110000
0010010101000
1000000100110
1000000011001
My={0 100001001100
010001000O0O0T1]1
0 01 010O0O0OO0OO0OT10T1
0010001010010
0001100001010
0001010010100
0 0010011000 0 1j
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Realizando operacdes elementares entre as linhas da matriz M3 iremos obter
uma matriz geradora G3 de um cédigo. Um exemplo de uma matriz geradora
pode ser a seguinte matriz:

1 0 0 00000 00O 0 1]
01 000O0O0OOCOO0O0OO0I1
00100O0O0OOGO0O0©O00O01
000100O0OOCGCO0O0©O0O0OT1
000O010O0OOCO0CO0©O0O0T1

G, = 000 0O01O0O0O0O0TGO0COI1
0 0O000O0O0C1TO0O0OO0OO0O01
000 00O0O0OT1O0O0O0O0I1
060 00O0O0OCO0CI1O0O0O0T1
0 60 060O0O0CO0CCO0OT1TO0O0T1
0 00O0O0CO0O0OOCOO0OT11O0T1

0 0 000 0O0O0O0O0O0 1T 1]

A matriz G tem 12 linhas linearmente independentes, logo o cédigo gerado
tem dimensao 12. Gera um cédigo de 2'? = 4096 palavras. As 4096 palavras do
cédigo sdo todas as possibilidades de adi¢Ges entre as linhas da matriz G3, ndo
esquecendo que estas adi¢des sdo realizadas em F.

Este c6digo de 4096 palavras que se obtém ndo é um cédigo de Hamming,
como aconteceu no primeiro exemplo. De acordo com a defini¢do 3.3.20 um
c6digo de Hamming tem comprimento n = 2" —1 e este c6digo de comprimento
13 ndo pode ser obtido dessa forma.

Como foi dito na sec¢do 3.1, ndo se sabe se existem planos projetivos fini-
tos de ordem n, para alguns valores de n. Recorrendo a teoria dos cédigos, e
devido a relagdo entre os planos projetivos finitos e os cédigos bindrios foi pos-
sivel mostrar que néo existe nenhum plano projetivo de ordem 10, questdo que
estava em aberto ha muito tempo. Isto resultou de um extenso trabalho com a
contribui¢do de muitos matematicos e culminou em 1989 no artigo [LTS89] de
Lam, Thiel e Swiercz. Estes mateméticos recorreram a uma pesquisa exaustiva
de diferentes casos com o auxilio de computadores.

3.4 Espacgos projetivos finitos

Vamos agora ver uma generalizagdo dos planos projetivos finitos. Embora este
sistema axiomatico néo limite o niimero de dimensdes, os exemplos que aqui
estudamos incidem principalmente no espaco tridimensional. Nesta geometria,
para além dos termos indefinidos que temos utilizado até agora, vamos utilizar
um termo definido a partir destes, que é o termo plano. Como nos axiomas nos
vamos referir a este termo, comecemos por introduzir a sua definicdo.
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3.4 Espacos projetivos finitos

Defini¢do 3.4.1. Dados um ponto R e uma reta s ndo incidente no ponto R, ao conjunto
de todos os pontos pertencentes ds retas que passam pelo ponto R e intersetam a reta s
¢ chamado plano definido pelo ponto R e pela reta s.

Consideremos agora os axiomas.

Axiomas:

Axioma I;: Se A e B sdo pontos distintos, existe, no minimo uma reta incidente
em ambos os pontos Ae B.

Axioma I,: Se A e B sdo pontos distintos, ndo existe mais do que uma reta
incidente em ambos os pontos.

Axioma I3: Se E, C, B e D sdo quatro pontos ndo colineares trés a trés e existe
um ponto A tal que os pontos A, E e C sdo colineares e os pontos A, B e
D sdo colineares, entdo existe um ponto F tal que os pontos E, B e F' sdo
colineares e os pontos C, D e F sao colineares (fig. 3.18).

Figura 3.18

Axioma I4: Existe, no minimo uma reta.

Axioma I5: Nem todos os pontos estdo na mesma reta.
Axioma lg: Existem, no minimo trés pontos em cada reta.
Axioma I7: Nem todos os pontos estdo no mesmo plano.

Axioma Ig: Existe uma reta com n + 1 pontos.

Com base nestes axiomas demostraremos as préximas afirmagoes.
Teorema 3.4.2. Dois pontos distintos incidem exatamente numa reta.

Demonstracio:

Sejam P e Q dois pontos distintos dados. De acordo com os axiomas I; e I
existe exatamente uma reta incidente em ambos. Od
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Teorema 3.4.3. Se os pontos R e S pertencem d reta PQ), entdo os pontos P e Q
pertencem d reta RS.

Demonstracio:

Sejam R e S dois pontos distintos pertencentes a reta PQ). De acordo com o
teorema 3.4.2 existe exatamente uma reta incidente nos pontos Re S, areta RS.
As retas RS e PQ representam a mesma reta, pois caso contrdrio obteriamos
uma contradi¢do com o axioma I;. Assim os pontos P e () pertencem a reta RS.
a

Teorema 3.4.4. Duas retas distintas ndo tém mais do que um ponto em comum.

Demonstragio:

Sejam r e s duas retas distintas. Suponhamos, com vista a um absurdo, que
as retas 7 e s incidem em dois pontos P e () distintos (fig. 3.19).

8

NP Q7 r
~_

Figura 3.19

Se P e () sdo pontos distintos, pelo teorema 3.4.2, existe exatamente uma
reta incidente em ambos os pontos, logo as retas r e s sdo coincidentes. Isto é
absurdo, porque as retas dadas sdo distintas. Portanto duas retas distintas ndo
tém mais do que um ponto em comum. ]

Teorema 3.4.5. Se P e Q) sdo dois pontos que estdo num plano m, entdo todos os pontos
da reta PQ) estdo no plano .

Demonstracao:

Seja m um plano e seja R um ponto e s uma reta tais que 7 é definido pelo
ponto R e pela reta s. Dados dois pontos P e  do plano #, podemos ter cinco
casos, qualquer outro sera analogo a estes.

1. Os pontos P e ( pertencem a reta s.
2. Um dos pontos P ou @ coincide com o ponto R.
3. A reta P(Q incide no ponto R.

4. Os pontos P, Q e R sdo nao colineares e o ponto P pertence a reta s e 0
ponto Q) ndo pertence a reta s.

5. Os pontos P, () e R sdo ndo colineares e os pontos P e ) ndo pertencem
areta s.
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3.4 Espacos projetivos finitos

Nos casos 1, 2 e 3 pela defini¢do de plano, todos os pontos da reta PQ) estdo no
plano .

Caso 4: Como o ponto ) pertence ao plano, a reta RQ interseta a reta s
num ponto M, por definigdo. Seja T um ponto qualquer da reta PQ (fig. 3.20).
Aplicando o axioma I; aos pontos Q, M, R, P e T, existe um ponto J tal que

R

P M
7 N

Figura 3.20

os pontos M, P e J sdo colineares e os pontos R, T e J sdo colineares, isto é, as
retas RT e M P tém o ponto J em comum. Como as retas M P e s sd0 a mesma,
o ponto T pertence ao plano por definigdo (fig. 3.21).

Figura 3.21

Caso 5: As retas PR e QR intersetam a reta s nos pontos M e N, respetiva-
mente, por defini¢do de plano. Aplicando o axioma I3 aos pontos R, P, M, Q e
N existe um ponto S comum as retas PQ} e M N (fig. 3.22).

Estamos nas condicdes do caso anterior pois a reta PQ) tem um ponto na
reta s, entdo todos 0s seus pontos pertencem ao plano. d

Lema 3.4.6. Seja 7 o plano definido por um ponto R e uma reta s. Se P e Q) sdo pontos
do plano 7, entdo a reta PQ) interseta a reta s.

Demonstragio:

Asretas R() e PR intersetam a reta s em dois pontos N e M, respetivamente,
por defini¢do de plano. Aplicando o axioma I3 aos pontos R, Q, N, P e M existe
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" /N '\

Figura 3.22

um ponto S tal que os pontos @, P e S sdo colineares e os pontos N, M e S
sdo colineares, isto é, as retas QP e NM (ou seja a reta s) tém um ponto .S em
comum. Portanto a reta P() interseta a reta s. O

Teorema 3.4.7. Quaisquer duas retas no mesmo plano tém um iinico ponto em comum.

Demonstragio:

Seja 7 o plano definido pela reta s e pelo ponto R. Sejam dadas duas retas r
e t do plano 7. Podemos ter dois casos:

1. uma das retas coincide com a reta s;

2. as retas r e t sdo distintas da reta s.

Caso 1: suponhamos que a reta r coincide com areta s. A reta ¢ tem no minimo
trés pontos pelo axioma Is. Sejam @) e P dois desses pontos. As retas RQ) e RP
intersetam a reta s nos pontos N e M respetivamente, por definigdo de plano.
Aplicando o axioma I3 aos pontos R, @), N, P e M existe um ponto J tal que os
pontos @, P e J sdo colineares e os pontos IV e M e J sdo colineares, isto é as
retas ¢ e s tém um ponto J em comum (fig. 3.23).

Figura 3.23

Caso 2: Asretas r e t incidem em pelo menos trés pontos cada. Sejam Ae B
dois pontos da reta e C' e D dois pontos da reta t. Asretasr, AC e BD inter-
setam a reta s em pontos S, N e M, respetivamente, pelo lema 3.4.6. Aplicando
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3.4 Espacos projetivos finitos

o axioma I3 aos pontos S, A, B, N e M, existe um ponto F talque os pontos A,
N e F sdo colineares e os pontos B, M e F sdo colineares (fig. 3.24).

& 57

Figura 3.24

Aplicando novamente o axioma I3 aos pontos F, A, C, B e D, existe um
ponto J tal que os pontos A, B e J sdo colineares e os pontos C, D e J sdo
colineares, isto é as retas r e ¢ tém um ponto em comum (fig. 3.25).

Figura 3.25

|

Definigdo 3.4.8. Dados um plano © e um ponto P ndo incidente no plano =, ao con-
junto de todos os pontos que incidem nas retas que passam pelo ponto P e que intersetam
o plano 7 é chamado espaco tridimensional T definido pelo ponto P e pelo plano 7.

Teorema 3.4.9. Seja oo um plano qualquer e seja 3 um plano definido por uma reta s
e por um ponto Q). Se o ponto Q e a reta s estiverem sobre o plano « entdo os planos o
e 8 sdo coincidentes.

Demonstragdo:
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Suponhamos que o ponto @ e areta s estao sobre o plano . Seja A um ponto
qualquer do plano a. Como o ponto ) estd sobre o plano a, todos os pontos
da reta AQ, de acordo com o teorema 3.4.5, estdo sobre o plano «. As retas s e
AQ intersetam-se num ponto, segundo o teorema 3.4.7. O ponto A estd sobre
uma reta que incide no ponto () e interseta a reta s, por defini¢do de plano 3, o
ponto A esta sobre o plano .

Seja C um ponto qualquer do plano 8. Por definicdo de plano, a reta CQ
interseta a reta s num ponto D. A reta s estd sobre o plano «, portanto o ponto
D é um ponto do plano a. Segundo o teorema 3.4.5, como o ponto D incide no
plano «, todos os pontos da reta QD estdo sobre . Logo em particular o ponto
C incide em a.

Concluimos assim que os planos «a e /3 sdo coincidentes.

Teorema 3.4.10. Se dois planos distintos o e 3 tém dois pontos A e B distintos em
comum, entdo os pontos comuns aos planos a e 3 sdo exatamente os pontos da reta AB.

Demonstragio:

Sejam a e 3 dois planos distintos e A e B dois pontos distintos sobre ambos
os planos. De acordo com o teorema 3.4.5, todos os pontos da reta ADB estdo
sobre ambos os planos a e 3. Logo os planos « e 3 tém em comum a reta AB.
Suponhamos que existe um ponto C' comum aos planos a e 8, mas néo incidente
na reta AB. Aplicando o teorema 3.4.9, o plano « e o plano j sdo coincidentes,
o0 que é impossivel pois os planos a e § sdo distintos. Portanto os planos a e 3

s6 tém em comum a reta AB.
O

Teorema 3.4.11. Se A e B sdo dois pontos distintos de um espago tridimensional T,
entdo todos os pontos sobre a reta AB estéo no espago I'.

Demonstragio:

Consideremos um espago tridimensional I' definido por um plano 7 e por
um ponto P. Sejam A e B dois pontos do espago tridimensional I'. Podemos
ter cinco casos, qualquer outro serd andlogo a estes:

1. os pontos A e B pertencem no plano 7;
2. um dos pontos coincide com o ponto P;
3. areta incidente nos pontos A e B contém o ponto P.

4. os pontos A, B e P sdo ndo colineares, e o ponto A pertence ao plano 7 e
o ponto B nao esta sobre o plano .

5. os pontos A, B e P sdo ndo colineares e ndo estdo sobre o plano 7.
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No caso 1 0s pontos A e B pertencem ao plano =, entdo pelo teorema 3.4.5
todos os pontos da reta AB pertencem ao plano 7, logo pertencem ao espago
tridimensional I

Nos casos 2 e 3, como consequéncia da definicdo de espaco tridimensional
I', todos os pontos da reta AB estdo no espago tridimensional I

No caso 4, a reta PB interseta o plano # num ponto N, por defini¢do. Seja
T um ponto qualquer da reta AB. Pretendemos provar que o ponto T pertence
ao espago tridimensional I'. Aplicando o axioma I3 aos pontos B, N, P, AeT
existe um ponto J tal que os pontos N, A e J sdo colineares e os pontos P, T
e J sdo colineares (fig. 3.26). O ponto J da reta NA pertence ao plano pelo

\»

Ty \B

4—4* ;
A J N
Figura 3.26

teorema 3.4.5. O ponto T como € colinear com os pontos P e J pertence ao
espaco tridimensional I' por defini¢do. Assim todos os pontos sobre a reta AB
estao no espago I'.

No caso 5, as retas PA e P13 intersetam o plano m em dois pontos NV e M, por
defini¢do de espaco tridimensional I'. Todos os pontos da reta M N pertencem
ao plano 7 segundo o teorema 3.4.5. Aplicando o axioma I3 aos pontos P, A,
N, B e M existe um ponto S comum as retas AB e MN (fig. 3.27).

|

L,
anuuny
S M N
Figura 3.27
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Estamos nas condigdes do caso anterior pois a reta AB tem um ponto na
reta M N, logo no plano 7, entdo todos os pontos da reta AB estdo no espago
tridimensional I". d

Coroldrio 3.4.12. Se um espaco tridimensional I é definido por um ponto P e por um
plano =, entdo o plano © e qualquer reta do espago tridimensional T, ndo contida no
plano T, tém exatamente um ponto em comum.

Demonstragdo:

Seja r uma reta do espaco tridimensional I que n&o esta contida no plano 7.
Sejam A e B dois pontos da reta r. Podemos ter trés casos:

1. se um dos pontos A ou B estiver sobre o plano 7, entdo o plano 7 e a reta
r intersetam-se.

2. se a reta r incide no ponto P, por defini¢do de espago tridimensional I, a
reta r interseta o plano «.

3. senem o ponto A nem o ponto B estdo sobre o plano 7 e areta r ndo incide
no ponto P estamos no caso 5 da demonstracéo anterior. Analisando-a
podemos ver que o plano 7 e a reta r intersetam-se no ponto § ai referido.

Suponhamos, com vista a um absurdo, que a reta r e o plano 7 tém dois
pontos S e () em comum. De acordo com o teorema 3.4.5 todos os pontos da
reta S estdo contidos no plano 7. Mas a reta r e SQ) sd0 a mesma pelo teorema
3.4.2, logo a reta r esta contida no plano 7, o que é absurdo pois supusemos
que a reta r ndo esta sobre o plano 7. Portanto o plano 7 e qualquer reta do
espaco tridimensional I', ndo contida no plano 7, tém exatamente um ponto em
comum. O

Coroldrio 3.4.13. Se um espago tridimensional I é definido por um ponto P e por
um plano =, entdo o plano = e qualquer outro plano do espago tridimensional T tém
exatamente uma reta em comum.

Demonstragio:

Seja 7 o plano definido por um ponto () e por uma reta ¢. Seja a um plano
contido no espaco tridimensional I distinto de 7. Existe uma reta s e um ponto
R, tais que o plano « € o conjunto dos pontos definidos pelas retas que incidem
no ponto R e intersetam a reta s. A reta s incide, no minimo, em trés pontos de
acordo com o axioma lg. Consideremos dois desses pontos, M e S. Construi-
mos as retas M R e RS. Assim existem no plano o pelo menos trés retas que
ndo sdo concorrentes num mesmo ponto. De acordo com o corolario 3.4.12,
cada uma destas retas tem exatamente um ponto em comum com o plano 7.
Como as trés retas ndo concorrem num mesmo ponto, garantimos a existéncia
de pelo menos dois pontos A e B do plano a incidentes no plano 7. Como os
pontos A e B pertencem aos planos o e m, aplicando o teorema 3.4.10, estes os
planos tém exatamente a reta AB em comum. O
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Teorema 3.4.14. Se um plano « e uma reta s, ndo contida no plano «, estido no mesmo
espago tridimensional T', entdo o plano o e a reta s tém exatamente um ponto em comum.

Demonstragio:

Consideremos um espaco tridimensional I, determinado por um plano 7 e
por um ponto P. Sejam « um plano e s uma reta deste espago tridimensional
I, tal que a reta s ndo esta contida no plano . Podemos ter dois casos:

1. o é um plano coincidente com o plano 7;
2. a é um plano distinto do plano 7.

Caso 1: se o é um plano coincidente com o plano =, pelo corolario 3.4.12, o
plano o e a reta s tém exatamente um ponto em comum.

Caso 2: se a é um plano distinto do plano =, de acordo com o corolério
3.4.13, o plano « e o plano 7 tém uma reta r em comum (fig. 3.28).

.P

Figura 3.28

Seja A um ponto qualquer do plano a que ndo pertence a reta . Temos dois
casos:

a. o ponto A pertence a reta s;

b. o ponto A ndo pertence a reta s.

Caso a: se o0 ponto A pertence a reta s, entdo o plano « e a reta s tém um
ponto em comum, como queriamos provar.

Caso b: consideremos o plano 3 definido pela reta s e pelo ponto A. O plano
@ interseta o plano 7 numa reta t, de acordo com o corolério 3.4.13. As retas r
e t sdo distintas. Ambas pertencem ao plano 7 tendo um ponto B em comum,
segundo o teorema 3.4.7. A reta AB esté contida no plano a, de acordo com o
teorema 3.4.5. A reta t incide no ponto B e estd contida no plano g, logo o ponto
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B é um ponto do plano 3. Assim a reta AB esta contida no plano 3, logo as retas
s e AB, de acordo com o teorema 3.4.7 tém um ponto em comum. Portanto a
reta s interseta o plano a.. Nao existem mais pontos em comum entre a reta s e
o plano a, pois se existissem a reta estaria contida no plano, pelo teorema 3.4.5,
o que contradizia o enunciado. O

Teorema 3.4.15. Num espaco projetivo de ordem n todas as retas tém exatamente n+1
pontos.

Demonstracdo:

Seja r uma reta qualquer do espago projetivo. De acordo com o axioma Ig,
existe uma reta s com n+1 pontos. Se as retas r e s sdo coincidentes, entdo a reta
r tem n+1 pontos. Mas se as retas r e s sdo distintas, entdo temos de considerar
dois casos:

1. as retas r e s estdo no mesmo plano;
2. asretas r e s s3o ndo complanares.

Caso 1: como as retas r e s estdo num mesmo plano, segundo o teorema
3.4.7, intersetam-se num ponto P. Sejam S;, Sy, ..., S, 0s restantes pontos da
reta s. De acordo com o axioma I, sabemos que existe um ponto R, distinto
do ponto P, nareta r. Também de acordo com o axioma I¢, sabemos que existe
um ponto 1" na reta RS, distinto dos pontos R, e Si. Seja ¢ um inteiro tal que
2 < ¢ < n. Aplicando o axioma I3 aos pontos S, R, T, P e S;, existe um ponto
R; comum as retas PR, e T'S; (fig. 3.29).

Ry

Figura 3.29

Conseguimos assim garantir a existéncia de pontos Ry, ..., R, distintos do
ponto P. Vejamos que estes pontos sdo distintos entre si. Consideremos pontos
R;e Rj,comi # j (fig. 3.30). Suponhamos, com vista a absurdo, que os pontos
R; e R; sdo o mesmo. Entdo as retas T'R; e TR, sdo coincidentes. Os pontos .S;
e S; incidem nas retas T R; e s, logo, de acordo com os axiomas I; e I, as retas
s e TR; sdo a mesma. O que é absurdo, pois o ponto T ndo incide na reta s.
Portanto, podemos concluir que a reta r tem n + 1 pontos (fig. 3.31).
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Figura 3.31

Caso 2: Seja A um ponto incidente na reta r. Consideremos o plano o de-
finido pela reta s e pelo ponto A. Seja P um dos n + 1 pontos da reta s. Como
os pontos A e P pertencem ao plano «, o lema 3.4.6 garante-nos que a reta AP
estd contida no plano a. As retas AP e s sdo complanares e portanto estdo na
situagdo do caso 1, logo a reta AP tem n + 1 pontos. Seja S um plano definido
pelo ponto P e pela reta r. Os pontos A e P pertencem ao plano §, logo a reta
AP esté contida no plano j3, de acordo com o lema 3.4.6. As retas AP e r estdo
na situagdo do caso 1, portanto a reta r tem n + 1 pontos.

Como a reta r foi tomada de forma arbitraria no espaco projetivo de ordem
n, concluimos que todas as retas tém exatamente n + 1 pontos.

a

Espagos projetivos de ordem dois

Os resultados que iremos apresentar ddo-nos a conhecer o niimero exato de
pontos e de retas num espago projetivo de ordem dois.

Teorema 3.4.16. Num espago projetivo de ordem n = 2 todos os planos tém exatamente
sete pontos.
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Demonstragdo:

Seja m um plano definido por um ponto A e por uma reta r. A reta r incide
em trés pontos, sejam dois deles B e C. Podemos construir as retas AB e AC.
A reta AB tem um terceiro ponto D e a reta AC tem um terceiro ponto E. Apli-
cando o axioma I3 aos pontos A, D, B, E e C existe um ponto F tal que D, Ee
F sédo colineares e B, C e F sdo colineares, ou seja, o ponto F' é comum as retas
DE e BC. Construimos seguidamente a reta AF. De acordo com o teorema
3.4.15, existe um ponto G pertencente a reta AF. Mostramos que existem sete
pontos A, B, C, D, E, F e G no plano (fig. 3.32).

Figura 3.32

Suponhamos, com vista a um absurdo, que existe um oitavo ponto K dife-
rente dos anteriores. Como os pontos K e A sdo distintos construimos a reta
AK incidente em ambos. De acordo com o teorema 3.4.7 a reta AK interseta a
reta r num ponto, esse ponto ndo pode ser B, C ou F, pois, se assim fosse, ob-
terfamos uma contradigdo com o teorema 3.4.2. Logo tem de existir um quarto
ponto na reta r comum a reta AK, o que é impossivel pois cada reta sé6 tem trés
pontos. Portanto no plano existem exatamente sete pontos. O

Reparemos que o plano 7 descrito na demonstragdo anterior é um plano
projetivo de ordem dois.

Teorema 3.4.17. Num espago projetivo de ordem dois, existem exatamente sete retas
em cada plano.

Demonstragido:

No teorema 3.4.15 provamos que existem sete pontos num plano do espago
projetivo de ordem n = 2. Tendo por base a sua demonstragdo provaremos
que existem sete retas num plano. Foram definidas as retas ABD, ACE, AFG,
BCF e DEF. Nos pontos B e E incide areta BE. O terceiro ponto desta reta s6
pode ser o ponto G, pois 0 ponto A e o ponto B sdo colineares com os restantes
pontos. Raciocinio andlogo para a reta DCG (fig. 3.33).
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Figura 3.33

Provaremos seguidamente que nio existem mais retas. Suponhamos, com
vista a um absurdo, que existe uma oitava reta s no plano. Esta reta tem trés
pontos e como o plano tem os sete pontos ja definidos, entdo os trés pontos da
reta s s6 podem ser trés dos sete pontos do plano. Suponhamos, sem perda de
generalidade, que a reta s incide no ponto A. De acordo com o teorema 3.4.7 a
reta s e a reta BC'F tém um ponto em comum. Este ponto ndo pode ser nem B,
nem C e nem F pois isto levaria a uma contradigdo com o teorema 3.4.2. Logo
tem de existir um quarto ponto na reta r, comum a reta s, o que é impossivel
pois cada reta s6 tem trés pontos. Portanto no plano existem exatamente sete
retas. ]
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Teorema 3.4.18. Num espago projetivo de ordem dois, o niimero de pontos num espago
tridimensional T’ é exatamente quinze.

Demonstragio:

Por definicdo, o espago tridimensional I' é definido por um plano = e por
um ponto P. No teorema3.4.15 provdmos que um plano tem exatamente sete
pontos. Tendo por base a sua demonstragéo consideremos no plano 7 os pontos
A,B,C, D, E, F eG. Em cada um destes pontos e no ponto P incide uma reta.
Cada uma destas retas tem trés pontos. Sejam H, K, J, L, M, N e O os pontos
incidentes respetivamente nas retas PB, PA, PC, PD, PE, PF e PG distin-
tos dos ja referidos. Estes pontos pertencem ao espaco I' pelo teorema 3.4.11.
Assim existem 15 pontos. Suponhamos, com vista a um absurdo, que existem
mais de quinze pontos, sendo o ponto @ um ponto distinto dos j4 mencionados.
No ponto P e no ponto @ incide a reta PQ), que interseta o plano 7 num ponto,
segundo o teorema 3.4.14. Este ponto tem de ser um dos pontos ja definidos
pois o plano 7 ndo tem mais pontos. No ponto P e nos pontos do plano 7 ja
incide uma reta, logo a reta PQ tem de ser uma das retas definidas anterior-
mente, caso contrario chegamos a uma contradi¢do com o teorema 3.4.2. Assim
o ponto ) tem de ser um dos pontos anteriores, o que é absurdo, pois o ponto
@ é um ponto distinto. Portanto existem exatamente quinze pontos. O

Teorema 3.4.19. Num espago projetivo de ordem n = 2, o niimero de retas incidentes
num espaco tridimensional I' é exatamente trinta e cinco.

Demonstragdo:

No teorema anterior demonstrdmos que num espago tridimensional I exis-
tem 15 pontos. Para provarmos que existem trinta e cinco retas utilizaremos as
mesmas nota¢des da demonstragdo anterior. No ponto A e em cada um dos res-
tantes catorze pontos incide uma reta. Construfmos anteriormente as seguintes
retas incidentes no ponto A: ABD, ACE, AFG e AKP (fig. 3.34).

No ponto A e no ponto H incide uma reta, que tem trés pontos. Iremos
seguidamente encontrar o terceiro ponto da reta AH. Seja o o plano definido
pelo ponto P e pela reta AB. Os pontos D, H, K e L sao pontos do plano «,
porque o ponto D é um ponto da reta AB e os pontos H, K e L sdo pontos,
respetivamente, das retas BP, AP e DP. Como os pontos A e H sdo pontos
do plano «, entdo a reta AH estd contida no plano «, de acordo com o teorema
3.4.5. Segundo o teorema 3.4.7, a reta AH tem um ponto em comum com qual-
quer reta do plano ¢, em particular com a reta PD. Esse ponto ndo pode ser o
ponto P, pois a reta AH interseta a reta AP no ponto A. Também ndo pode ser
o ponto D porque a reta AH interseta a reta AD no ponto A. Logo areta AH s6
pode intersetar a reta PD no ponto L. Assim construimos a reta AHL. Seja 8 o
plano definido pelo ponto P e pela reta AC. Analogamente ao que vimos para
o plano « verificamos que os pontos A, C, E, J, M e P sdo pontos do plano 3
e que a reta AJ interseta a reta PE no ponto M. Seja § o plano definido pelo
ponto P e pela reta AF. Analogamente ao que vimos para o plano « verifica-
mos que os pontos A, F, G, N, O e P sdo pontos do plano ¢ e que a reta AN
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Figura 3.34

interseta a reta GP no ponto O. Temos, entéo a reta ANO. Construimos todas
as retas incidentes no ponto A. Por raciocinios andlogos ao que fizemos para
encontrar as retas incidentes no ponto A, encontramos as retas incidentes nos
pontos: B,C,D,E,F,G,H,K,J,L,M,Ne 0. Assim as trinta e cinco retas sdo:
ABD, ACE,AFG, AHL, AKP, AJM, ANO, BCF, BEG, BHP, BKL, BJN,
BMO, CDG, CHN, CKM, CJP, CLO, DEF, DHK, DJO, DLP, DMN,
EHO, EKJ, ELN, EMP, FHJ, FKO, FLM, FNP, GHM, GKN, GJL e
GPO. Suponhamos, com vista a um absurdo, que existem mais de 35 retas.
Seja s uma reta distinta das anteriores. A reta s tem trés pontos, que s6 podem
ser trés dos quinze pontos jé definidos, caso contrario chegamos a uma contra-
di¢do com o teorema 3.4.17. Suponhamos, sem perda de generalidade, que a
reta s incide no ponto A. No ponto A e em cada um dos outros pontos do es-
paco tridimensional T incide j4 uma reta, logo a reta s tem de ser uma das retas
consideradas anteriormente, caso contrario chegamos a uma contradicdo com
o teorema 3.4.2. Mas isto é impossivel, pois a reta s é distinta das anteriores.
Provamos que existem exatamente trinta e cinco retas. g
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Capitulo 4

Planos Afins Finitos

Seja n > 1 um natural.

Um conjunto de pontos que satisfaca o seguinte sistema de axiomas chama-
se plano afim de ordem n.

Axiomas:
Axioma J;: Existem pelo menos quatro pontos nao colineares trés a trés.
Axioma J,: Existe pelo menos uma reta incidente com exatamente n pontos.

Axioma J3: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma J4: Dados uma reta r e um ponto P ndo incidente em r, existe exata-
mente uma reta incidente no ponto P paralela a reta r.

Comparando o sistema axiomético do plano afim de ordem n com o do
plano projetivo de ordem n verificamos que existem dois axiomas que diferem,
o segundo e o quarto. No plano afim de ordem n existe pelo menos uma reta
incidente em exatamente n pontos, enquanto que no plano projetivo de ordem
n existe pelo menos uma reta incidente em exatamente n + 1 pontos. No plano
afim de ordem n, dados uma reta r e um ponto P nédo incidente em r, existe exa-
tamente uma reta incidente no ponto P paralela a reta r e no plano projetivo de
ordem 7, dadas duas retas distintas existe pelo menos um ponto incidente com
ambas.

O plano afim de ordem n e o plano projetivo de ordem n também diferem
relativamente ao principio da dualidade, uma vez que o primeiro néo o satisfaz
e o segundo sim, como foi demonstrado anteriormente.

Apresentamos seguidamente duas razdes que justificam o facto de o plano
afim de ordem n néo verificar o principio da dualidade.

Primeira razdo: se considerassemos o dual do axioma J; existiria pelo menos
um ponto incidente em exatamente n retas. Isto contradiria o teorema 4.0.21,
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demonstrado mais a frente, que afirma que cada ponto incide em exatamente
n + 1 retas.

Segunda razdo: observemos que se o dual do axioma J3 fosse verdadeiro,
dadas duas retas distintas existiria exatamente um ponto incidente em am-
bas. De acordo com o axioma J,, existe pelo menos uma reta r com n pontos
P, P, ..., P,. Aplicando o axioma J;, existe um ponto ) ndo incidente na reta
r (fig. 4.1).

P B P,or
L]
Q
Figura 4.1

Segundo o axioma J4, existe exatamente uma reta s incidente no ponto e
que ndo interseta r. Assim as retas r e s ndo tém nenhum ponto em comum, o
que contradiz o dual do axioma J3.

Lema 4.0.20. Duas retas paralelas a uma terceira sio paralelas entre si.

Demonstragdo:

Sejam r e s duas retas paralelas. Suponhamos, com vista a um absurdo, que
existe uma reta t que interseta a reta s, num ponto T" e ndo interseta a reta r (fig.
4.2).

/ T
Figura 4.2

Assim pelo ponto T passam duas retas paralelas a reta » o que contradiz o
axioma Jy.
Portanto as trés retas sio paralelas entre si. d

Teorema 4.0.21. Num plano afim de ordem n, cada ponto incide em exatamente n +1
retas.
Demonstracdo:

Seja P um ponto do plano. De acordo com o axioma J5, existe pelo menos
uma reta r incidente com exatamente n pontos P;, P, ..., P,. Poderemos con-
siderar dois casos distintos:

1. o ponto P ndo incide na reta r;
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2. o ponto P incide na reta r.

Caso 1: se o ponto P ndo incide na reta 7, segundo o axioma J4 existe exata-
mente uma reta s incidente no ponto P e paralela a reta r. No ponto P e em cada
um dos pontos Py, B, ..., P, incidem as retas ry, 7, ..., r, respetivamente, de
acordo com o axioma J3. Estas retas sdo distintas, pois os pontos P, P, ..., P,
sdo distintos (fig. 4.3).

AV S

Figura 4.3

Assim P incide em n + 1 retas. Suponhamos, com vista a um absurdo, que
no ponto P incidem pelo menos 7 + 2 retas. Seja t uma reta incidente no ponto
P diferente das ja consideradas. Como as retas r e s sdo paralelas, de acordo
com 0 axioma J,, a reta t tem de intersetar a reta r. Assimaretarearetat
tém um ponto em comum, e este ponto é diferente de todos os outros pontos
da reta r porque as retas sao todas diferentes. Assim a reta r tem n + 1 pontos,
0 que nao podc acontecer por defini¢do da reta r. Portanto no ponto P incidem
exatamente n + 1 retas.

Caso 2: se o ponto P incide em r, vamos assumir que os pontos P e P
sdo coincidentes. De acordo com o axioma J; garantimos a existéncia de um
ponto @ nédo incidente na reta r. No ponto @ incide uma reta s paralela a reta
r, aplicando o axioma J4. Segundo o axioma J3, existe exatamente uma reta r;
incidente nos pontos P e Q). Aplicando o axioma J4 a reta r; e ao ponto P, existe
uma reta r; incidente no ponto P, e paralela a reta 1. A reta r; interseta a reta
s, pois caso contrério existiriam duas retas paralelas a reta , (r; e s), o que
contradizia o axioma J;. A reta r; ndo incide no ponto Q, pois é um ponto da
reta 1. O ponto de intersecao da reta r; com a reta s é um ponto Q; (fig. 4.4).

PsP |P, B P, r
L} 2
R Q2 s
Figura 4.4
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Consideremos o ponto P; e a reta r;. De acordo com o axioma J4 existe
exatamente uma reta r; incidente no ponto P; e paralelaa retary. Comoaretar;
é paralela a reta rq, pelo lema 4.0.20 a reta r3 também é paralela a reta r;. Asretas
r3 € s intersetam-se num ponto, Q3 (pela razio que indicamos anteriormente).
De modo andlogo construimos os restantes n pontos sobre a reta s. Segundo o
axioma J3, no ponto P, no ponto ) e em cada ponto @; com ¢ = 2,...,n incide
exatamente uma reta. Assim no ponto P incidem n + 1 retas. Vamos provar
que existem exatamente n + 1 retas. Suponhamos, com vista a um absurdo, que
no ponto P incide uma reta t diferente de r, PQ, PQ, ..., PQ,. Asretaste
s intersetam-se no ponto 7" ( a reta t ndo pode ser paralela 4 reta s, pois pelo
axioma J4, existe exatamente uma reta paralela a reta s que é a reta r) (fig. 4.5).

Py

™ t

Figura 4.5

O ponto T é diferente dos pontos Q, @2, ..., @n, porque se ndo o fosse, a
reta t coincidiria com uma das retas PQ, PQy, ..., PQ,. Como o ponto T néo
incide em 7y, entao, pelo axioma J4, existe uma reta v que incide no ponto T e
é paralela a r;. Pelo lema 4.0.20 a reta v é paralelaa rq,...,7,. A retav tem de
intersetar a reta r, pois ja existe uma reta paralela r que passa pelo ponto T (reta
s); pelo axioma J4, ndo podem existir mais retas. Mas isso significa que a reta r
tem mais um ponto, uma vez que a reta v é paralela a todas as outras retas. A
reta r ndo pode ter mais pontos, pois tem exatamente n pontos, logo chegamos
a uma contradi¢do. Assim no ponto P incidem n + 1 retas. O

Teorema 4.0.22. Num plano afim de ordem n, cada reta contém exatamente n pontos.

Demonstragdo:

Seja r uma reta dada. De acordo com o axioma J; garantimos a existéncia de
um ponto @ nado incidente em r. Segundo o teorema 4.0.21, o ponto Q incide
em exatamente n + 1 retas distintas ry, r2, . . ., rp1. Como o ponto Q néo incide
na reta r, pelo axioma Jy, existe exatamente uma reta que incide em ¢} e ndo
interseta a reta r, portanto esta reta terd de ser uma das retas anteriormente
mencionadas. Sem perda de generalidade suponhamos que 7,1 é paralela a
reta r. Assim as retas r1, ra, . . ., ', intersetam a reta r nos pontos P, P, ..., P,,
respetivamente. Provaremos seguidamente que os pontos sido todos distintos.
Suponhamos, com vista a um absurdo, que os pontos P; e P; sdo o0 mesmo,
com i # j. De acordo com o axioma J3 existe exatamente uma reta incidente
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simultaneamente em P;, Rj e (), assim as retas r; e r; sdo a mesma, o que é
absurdo. Logo os pontos P, P, .. ., P, sdo distintos (fig. 4.6).

A S

Q T+l

/\

Figura 4.6

Provaremos agora que existem exatamente n pontos na reta r. Suponhamos,
com vista a um absurdo, que na reta r incidem n + 1 pontos, P, P, ..., Pp.1.
No ponto Q e em Py, P, ..., P, incidem as retas ry, 7y, ..., 7. Pelo axioma Js,
no ponto @ e no ponto F,,; incide exatamente uma reta, 7,.>. Assim no ponto
Q incidem n + 2 retas, o que contradiz o teorema 4.0.21.

Concluimos assim que cada reta contém exatamente n pontos. 0

Teorema 4.0.23. Num plano afim de ordem n, cada reta admite exatamente n— 1 retas
paralelas.

Demonstracio:

Seja » uma reta dada. De acordo com o teorema 4.0.21 na reta r incidem
n pontos distintos. Segundo o teorema 4.0.22 no ponto P incidem exatamente
n + 1 retas. Seja t uma reta incidente em P, distinta da reta r. Na reta ¢ existem
n — 1 pontos distintos de P, pelo teorema 4.0.22 (fig. 4.7).

t
P r

Figura 4.7

De acordo com o axioma J4, se um ponto ndo incide na reta r entdo existe
exatamente uma reta que incide nesse ponto e é paralela a reta r. Como a reta
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t tem n — 1 pontos nado incidentes em r (caso contrério, as retas ¢ e 7 seriam
a mesma pelo axioma J3) existem n — 1 retas incidentes nesses n — 1 pontos,
P, B,,..., P,_1,equendo intersetam r. Provemos que existem exatamente n—1
retas paralelas a reta r. Suponhamos, com vista a um absurdo, que existe outra
reta s diferente das anteriores e paralela a reta r. A reta s tem de intersetar
a reta t, caso contrario a reta s é paralela a duas retas que passam pelo ponto
P (as retas r e t) o que contradiz o axioma J;. Como a reta s interseta a reta ¢
num ponto, a reta ¢ tem outro ponto distinto dos anteriores, caso contrario nos
pontos Py, P,, ..., P,_; incidiriam duas retas paralelas aretar, o que contradiz o
axioma J;. Mas a reta t ndo pode ter mais pontos, pelo teorema 4.0.22. Portanto
existem exatamente n — 1 retas paralelas a reta r. g

Teorema 4.0.24. Num plano afim de ordem n, existem exatamente n? pontos e n* +n
retas.

Demonstragio:

Comecemos por mostrar que existem exatamente n? pontos. Seja P um
ponto dado. De acordo com o teorema 4.0.21, no ponto P incidem n + 1 retas,
71,72, ..., Tns1. Mas em cada reta incidem n pontos, de acordo com o teorema
4.0.22, assim em todas as retas r; comi=1,...,n + 1 incidem n — 1 pontos dife-
rentes do ponto P. Vejamos que nado existem mais pontos para além destes. Por
qualquer ponto do plano diferente do ponto P e pelo ponto P tem de incidir
uma reta, pelo axioma J3, logo esse ponto tem de pertencer a pelo menos uma
das n + 1 retas que incidem no ponto P, de acordo com o teorema 4.0.21. Logo
o namero total de pontos é

(n+1)(n—1+1=n

Mostremos que existem exatamente n? + n retas. Seja r uma reta dada. De
acordo com o teorema 4.0.22, na reta r incidem n pontos, P, P, ..., P,. Em
cada um destes pontos incidem n retas diferentes da reta » pelo teorema 4.0.21.
Existem exatamente n — 1 retas paralelas a reta r, aplicando o teorema 4.0.23.
Assim o niumero total de retas é

nxn+l+(n—1)=n’+n.

Exemplo 4.0.25. Um possivel modelo para o plano afim de ordem dois.

De acordo com o axioma J;, existem quatro pontos P, @, R e S ndo colinea-
res trés a trés. Aplicando o axioma J3 construimos as retas PQ, QS, SR, RP, PS
e RQ. Como o plano é de ordem dois, pelo teorema 4.0.22, cada reta tem exata-
mente dois pontos e de acordo com o teorema 4.0.24 existem exatamente quatro
pontos e seis retas. Estes pontos e estas retas foram definidas anteriormente.

Um modelo ilustrativo do que acabamos de dizer poderd ser o da figura 4.8.
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Figura 4.8: modelo 1

Podemos obter um plano afim de ordem dois a partir de um plano projetivo
de ordem dois se neste for apagada uma reta e os seus pontos. Vejamos o mo-
delo do plano projetivo de ordem dois apresentado na sec¢io 3.1 do capitulo 3
(fig. 4.9).

G C
F

Figura 4.9: modelo 2

Se neste modelo apagarmos, sem perda de generalidade, a reta DEF' vamos
obter outro exemplo de um modelo de um plano afim de ordem dois como

podemos ver na figura 4.10.
A

G C

A7 AN

Figura 4.10: modelo 3

Observemos que tanto o modelo 1 como o modelo 3, que sdo exemplos de
planos afins de ordem dois, aparecem também como exemplos de modelos que
satisfazem a axiomatica da geometria dos quatro ponto pontos, que foi tratada
na secgdo 1.1 do capitulo 1. Provdmos também nessa sec¢do que estes modelos
sdo isomorfos.
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Exemplo 4.0.26. Um possivel modelo para o plano afim de ordem trés.

Existe uma reta g incidente em trés pontos P, ) e T', de acordo com o axioma
J2. A reta a tem exatamente duas retas paralelas b e ¢, segundo o teorema 4.0.23.
Aplicando o teorema 4.0.22, a reta b tem exatamente trés pontos R, Se U eareta
¢ também tem trés pontos X, V e Z. De acordo com o axioma J; construimos
a reta PR. Esta reta ndo pode ser paralela a reta ¢, de acordo com o teorema
4.0.23, pois ja existem duas retas paralelas a reta c (a e b). Logo areta PRea
reta ¢ intersetam-se num dos pontos X ou V' ou Z. Como estes pontos estdo em
igualdade de circunstincias podemos escolher, sem perda de generalidade, o
ponto X. Construimos a reta PRX. Analogamente construimos a reta PS que
também interseta a reta c. Esta interse¢do ndo pode ser o ponto X, pois as retas
PS e PRX seriam a mesma. Assim as retas intersetam-se ou no ponto V ou no
ponto Z, sem perda de generalidade escolhemos o ponto Z. Construimos a reta
PSZ. Por razdes anélogas a anterior definimos areta PUV . Pelo ponto P ja ndo
podem passar mais retas, segundo o teorema 4.0.21. Por argumentos anélogos
aos anteriores construimos as retas incidentes no ponto @, QRZ, QSV e QU X
e as retas incidentes no ponto ', TRV, TSX e TU Z. Temos definidos os nove
pontos e as doze retas PQT, PRX, PSZ, PVU,RSU, RTV,QRZ,QSV,QU X,
TSX,TUZ, VXZ referidos no teorema 4.0.24. Um modelo ilustrativo do que
acabamos de dizer podera ser o da figura 4.11:

y P Q 3 a

i i
4 /

TV
Figura 4.11

Reparemos que este modelo proposto ja nos apareceu no capitulo 1 noutra
axiomatica, a geometria dos nove pontos e doze retas. Também o encontramos
no plano projetivo de ordem trés, quando a este tltimo retiramos uma reta e
seus pontos.

Isto ndo acontece por acaso, vamos terminar o capitulo mostrando uma re-
lagdo entre um plano afim e um plano projetivo. Consideremos a configuragao
de um plano projetivo de ordem n. Nesta configuragio existem n?+n+1 pontos
e n? +n+1 retas de acordo com o teorema 3.1.11. Se nesta configuracdo retirar-
mos uma reta e os respetivos pontos vamos ficar com n? + n retas e n? pontos,
pois cada reta tem n + 1 pontos segundo o teorema 3.1.9. Este é o nimero de
retas e pontos de um plano afim. Vamos ver porque isto acontece no teorema
seguinte.
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Teorema 4.0.27. Sejat uma reta de um plano projetivo m de ordem n. Seja « a confi-
guracdo que se obtém retirando a reta t e todos os seus pontos. Entdo a é um plano afim
de ordem n.

Para demonstrar o teorema vamos verificar que ao retirar a reta ¢ e os respe-
tivos pontos, os quatro axiomas dos planos afins sdo satisfeitos. Para fazer esta
verificagdo utilizaremos todos os axiomas e resultados da sec¢do 3.1 do capitulo
3.

Demonstragio:

Axioma J;: Existem pelo menos quatro pontos néo colineares trés a trés.

Num plano projetivo = de ordem n, segundo o axioma H;, podemos tomar
quatro pontos ndo colineares trés a trés. Podemos ter trés casos distintos:

1. nenhum dos quatro pontos pertence a reta t;
2. um dos pontos pertence a reta ¢;
3. dois dos pontos pertencem a reta ¢.

Caso 1: se nenhum dos quatro pontos pertencer a reta ¢ e esta for retirada
assim como 0s seus pontos, entdo os quatro pontos ndo colineares trés a trés
pertencem a configuracdo a e o axioma ¢ verificado.

Caso 2: existem trés pontos ndo colineares A, B e C ndo incidentes na reta
t e precisamos de encontrar um quarto ponto D também ndo incidente na reta
t e que ndo esteja sobre nenhuma das retas AB, AC e BC. Segundo o axioma
H; podemos considerar dois pontos E e F' distintos incidentes na reta t. De
acordo com o axioma Hj3, construimos as retas BE e C'F, que sdo distintas,
caso contrario os pontos B e C pertenceriam a reta ¢, o que é falso por hipétese.
Estas retas intersetam-se num ponto D, segundo o teorema 3.1.3.

& B
D /
C
t F E
/-
Figura 4.12

O ponto D néo pertence a reta t, pois caso contrério as retas BE, CF e t se-
riam a mesma, o que, como vimos, ndo pode acontecer. O ponto D também nédo
pertence a reta BC, pois caso contrario as retas BC, CF e BE seriam a mesma.
Por razdo andloga o ponto D néo pertence as retas AB e AC. Provamos assim
que existem os pontos 4, B, C e D de modo que o axioma J; seja verificado.

Caso 3: existem dois pontos distintos A e B nao incidentes na reta ¢. Temos
de encontrar outros dois pontos C' e D distintos, ndo pertencentes a reta t de
modo que os quatro pontos A, B, C e D sejam nao colineares trés a trés. Como
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aretattemn + 1 pontos e n > 1 podemos considerar em ¢ os pontos E, F e G
distintos. De acordo com o axioma Hj construimos as retas AF, AG, BE e BF,
que facilmente verificamos serem distintas. As retas AF e BE tém um ponto C
em comum e as retas AG e BF tém um ponto D em comum de acordo com o
teorema 3.1.3 (fig. 4.13).

A B/

Figura 4.13

O ponto C ndo pode pertencer a reta AB, pois caso contrario as retas AD,
AF e BE seriam amesma. O ponto C também nao pode pertencer a reta t, pois
caso contrario as retas AF, BF et seriam a mesma. Analogamente vemos que
o ponto C ndo pertence nem a reta AG nem a reta BF". Por seu lado o ponto D
ndo pode pertencer as retas AB, t, AF' e BE por razdes andlogas as indicadas
anteriormente. Portanto A, B, C e D sdo quatro pontos ndo colineares trés a
trés e 0 axioma J; é verificado.

Axioma J»: Existe pelo menos uma reta incidente com exatamente n pontos.

Seja s uma reta distinta de ¢. De acordo com o teorema 3.1.9 a reta s in-
cide em exatamente n + 1 pontos. As retas s e t intersetam-se num ponto R de
acordo com o teorema 3.1.3. Se retirarmos a reta ¢ e os seus pontos, o ponto
R, que pertence a ambas as retas, também é retirado. Assim a reta s fica com n
pontos. Verificamos que existe uma reta com exatamente 7 pontos, sendo assim
o axioma J; é satisfeito.

Axioma J3: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Sejam A e B dois pontos distintos ndo incidentes na reta ¢, de acordo com o
teorema 3.1.5. A reta AB néo foi retirada ao plano 7, logo a reta ainda pertence
ao plano a. O axioma J3 € satisfeito.

Axioma J4: Dados uma reta r e um ponto P ndo incidente em r, existe exa-
tamente uma reta incidente no ponto P paralela a reta r.

Sejam r uma reta distinta da reta ¢ e P um ponto ndo incidente nem na reta
r nem na reta t. A reta t e a reta r intersetam-se num ponto Q, de acordo com
o teorema 3.1.3. Aplicando o axioma Hj, construimos a reta s incidente nos
pontos P e (). A reta s tem em comum com as retas anteriores o ponto () (fig.
4.14).

Se retirarmos a reta ¢ e os respetivos pontos estamos a retirar o ponto (), mas
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Figura 4.14

este é o tinico ponto em comum das retas r e s, portanto as retas r e s ndo se
intersetam na configuracao «, isto é, sdo paralelas. Assim dados um ponto P
e uma reta r ndo incidente no ponto P, existe uma reta s incidente no ponto P
paralela a reta . Vamos provar que esta reta € tinica. Suponhamos, com vista
a um absurdo, que existe uma reta u diferente da reta s também paralela a reta
r e incidente no ponito P. No plano projetivo = de onde partimos, a reta u, de
acordo com o teorema 3.1.3, interseta a reta » num ponto. Podemos ter dois
casos distintos:

1. areta u interseta as retas t e r no ponto @;

2. areta u interseta a reta £ num ponto M e a reta 7 num ponto IV, ambos
distintos do ponto Q.

Caso 1: se a reta u interseta as retas t e r no ponto Q, entdo de acordo com o
axioma Hj as retas s e u sdo a mesma, o que é absurdo pois supusemos que as
retas sdo distintas.

Caso 2: se a reta u interseta a reta t num ponto M e a reta r num ponto N,
distintos do ponto (), entdo se retirarmos a reta t e os respetivos pontos a reta u
continua a intersetar a reta r no ponto NV, logo as retas u e r ndo sdo paralelas,
o que é absurdo.

Portanto dados uma reta r e um ponto P ndo incidente em r, existe exata-
mente uma reta incidente no ponto P paralela a reta r. O axioma J4 é verificado.
a
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