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Resumo

Este trabalho incide no estudo de algumas geometrias finitas, de um ponto de
vista axiomático. São apresentadas e estudadas as seguintes geometrias: a ge-
ometria dos quatro pontos, a geometria dos três pontos, a geometria dos sete

pontos, a geometria dos nove pontos e doze retas, a configuração de Desargues,
a configuração de Papo, planos e espaços projetivos finitos e planos afins finitos.

Palavras chave: geometrias finitas, planos e espaços projetivos, sistema axi-
omático.
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Abstract

Finite geometries

In this work we study a few finite geometries, from an axiomatic point of view.
The following geometries are presented and studied: four-point geometry,
three-point geometry, seven-point geometry, nine-point-and-twelve-line geo-
metry, Desargues configuration, Pappus configuration, finite projective planes
and spaces, and finite afine planes.

Key-words: finite geometries, prq'ective planes and spaces, axiomatic sys-
tem.
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Introdução

A geometria finita é uma geometria baseada num conjunto de axiomas, ter-
mos indefinidos, termos definidos e relações que limitam o coniunto de todos
os pontos e o conjunto de todas as retas a um número finito. O estudo desta
geometria, do qual Gino Fano (1.877-7952) foi um dos pioneiros, sofreu um de-
scnvolvimento significativo a partir do início do século XX. Atualmente está
relacionada com algumas áreas da matemática, como por exemplo, teoria de
códigos, criptografia, teoria de grupos e combinatória. Ao longo deste trabalho
iremos introduzir vários tipos de geometrias finitas, começando pelas que pa-
reciam mais simples, nas quais foram abordados alguns conceitos importantes.
Cada uma das geometrias será abordada por via axiomática. Começamos por
introduzir em cada uma delas os seus axiomas e a partir destes enunciaremos
e demonstraremos vários resultados que nos ajudarão a compreendê-las. Um
sistema axiomático é uma estrutura lógica organizada constituída por termos
indefinidos, termos definidos, axiomas e outros resultados a que podemos cha-
mar lemas, corolários e teoremas. Ao tentarmos definir um termo necessitamos
de outras palavras, que por stTavez, necessitam de outras palavras, facilmente
chegamos a um círculo vicioso, surgindo assim a necessidade de não definir
todos os termos. Utilizaremos os termos ponto, reta e relação de incidência
como termos indefinidos. Todos os termos que utilizaremos são definidos a

partir destes. Os axiomas são afirmações que são aceites como verdadeiras sem
demonstração. São essenciais nos sistemas axiomáticos porque precisamos de
um conjunto de afirmaçóes iniciais a partir do qual iremos deduzir e demons-
trar outras afirmações. A estas novas afirmações chamamos lemas, corolários
e teoremas. Abordaremos algumas caraterísticas de um sistema axiomático. A
um sistema axiomático no qual não existam contradições entre quaisquer duas
afirmações chamamos sistema consistente. Uma forma de provar a consistên-
cia de um sistema é apresentar um modelo que o satisfaça. Um modelo é um
conjunto de objetos, que tomam o papel de pontos e retas, e relações entre esses

objetos, que correspondem à relação de incidência. Outra caraterística que po-
dem ter os sistemas axiomáticos é a independência: dizemos que um sistema
é independente se nenhum axioma pode ser provado a partir dos outros axio-
mas. Os sistemas axiomáticos independentes permitem-nos conhecer melhor a

geometria em questão. Outro atributo que poderemos verificar em alguns sis-
temas axiomáticos é que se trocarmos a palavra ponto por reta e vice-versa nos
axiomas, vamos obter afirmações que ainda são verdadeiras neste sistema axi-
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omático. Um sistema nestas condições diz-se que satisfaz o princípio da duali-
dade. No primeiro capítulo iremos dar quatro exemplos de geometrias finitas:
a geometria dos quatro pontos, a geometria dos três pontos, a geometria dos
sete pontos e a geometria dos nove pontos e doze retas. No primeiro exemplo
introduziremos os conceitos de consistência, independência e dualidade, acima
referidos. Apresentaremos, em cada uma das geometrias, um modelo para pro-
var a sua consistência, daremos um exemplo para demonstrar a independência
de cada axioma e iremos verificar se cada um dos sistemas axiomáticos satis-
faz ounão o princípio da dualidade. Concluiremos que nestes exemplos dados
somente a geometria finita dos três pontos e a geometria finita dos sete pon-
tos são sistemas que satisfazem o princípio da dualidade. No segundo capí-
tulo abordaremos a configuração de Desargues e a configuração de Papo. A
configuração de Desargues aprcsenta uma relação interessantc cntrc pontos e
retas, que é a de polaridade, a qual será desenvolvida pormenorizadamente.
Ambas as configurações satisfazem o princípio da dualidade. Terminaremos
o esfudo de cada uma das configurações com o teorema que lhe dá o nome:
Teorema de Desargues e Teorema de Papo, respetivamente. No terceiro capí-
tulo serão abordadas as axiomáticas dos planos e espaÇos projctivos finitos. O
espaço projetivo é uma generalização do plano projetivo, que admite mais de
duas dimensões. Em ambas as axiomáticas enunciaremos e provaremos alguns
resultados importantes. Nos planos projetivos finitos construiremos dois mo-
delos dos planos mais simples, um de ordem dois e outro de ordem três. Em
seguida, faremos uma breve discussão sobre a existência de planos projetivos
de outras ordens. Ainda neste capítulo iremos estabelecer uma conexão entre
planos projetivos finitos e a teoria de códigos e entre planos projetivos finitos e

quadrados latinos. Para compreendermos melhor estas conexões iremos obter
dois códigos, um a partir de um plano projetivo de ordem dois e outro a partir
de plano projetivo de ordem três. A existência desta relação vem contribuir para
dar resposta à questão sobre a existência de planos projetivos de uma dada or-
dem. Posteriormente construiremos um conjunto de quadrados latinos a partir
de um plano projetivo de ordem três e vice-versa. No último capítulo introdu-
ziremos a axiomática dos planos afins finitos e faremos uma breve comparação
com os planos projetivos finitos. Verificamos que este sistema axiomático, ao

contrário do plano projetivo finito, não satisfaz o princípio da dualidade. Dare-
mos dois exemplos de possíveis modelos, um de ordem dois e outro de ordem
três. Finalizaremos com um resultado que estabelece uma relação entre os pla-
nos projetivos de ordem n e os planos afins de ordem n.

-t2



Notações e convenções

Nos diferentes exemplos de geometrias finitas que iremos abordar neste traba-
lho adotámos alguns conceitos e terminologias.

Em todos os sistemas axiomáticos tomamos para termos indefinidos: ponto,
reta e relação de incidência. Utilizamos como sinónimo do termo relação de in-
cidência os termos: pertencer a, passar em, estar sobre, conter e ter. Por exemplo
as expressões, a reta r incide no ponto P e o ponto P está sobre a reta r têm o
mesmo significado.

Consideramos ummodelo para um sistema axiomáticocomosendoum con-
junto de objetos, que tomam o papel de pontos e retas, e relações entre esses

objetos, que correspondem à relação de incidência.
Designamos os pontos por letras maiúsculas (por exemplo: ponto P), as re-

tas por letras minúsculas (por exemplo: retar), os planos por letras gregas (por
exemplo: plano cv, plano p, plano zr). No capítulo 3 na secção 3.4 vamos de-
nominar os espaços tridimensionais por letra gregas maiúsculas (por exemplo:
espaço tridimensional I).

Além disso, se existe uma única reta incidente em dois pontos A e B da-
dos, então designamo-la por reta AB. Por conveniência, se três ou mais pontos
forem colineares, podemos designar a reta que incide nesses pontos por uma
sequência de letras que os designa. Por exemplo se os pontos A, B, C e D são
colineares, podemos designar a reta que neles incide por reta ABCD. Cha-
mamos a atenção para o facto de esta notação ser pouco comum em livros de
geometria, mas optamos pela sua utilização para facilitar a compreensão. No
caso de os pontos não serem colineares poderemos denotar da mesma forma
outros objetos, por exemplo podemo-nos referir ao quadrilátero ABC D ou ao
hexágono ABC D E F . Em qualquer dos casos será sempre identificado o objeto
a que nos estamos a referir.

Algumas retas serão representadas de forma pouco habitual, nas figuras que
acompanham o texto, isto é, são representadas por linhas curvas. Optámos por
esta representação porque nalguns casos as relação de incidência não permite
utilizarmos somente segmentos de reta para representarmos uma reta.

Utilizaremos as seguintes definições:

Definição 0.0.1 (retas paralelas). Retas paralelas são retas que não têm nenhum ponto
em comum.

DeÍinição 0.0.2 (colineariedade). Dois ou mais pontos dizem-se colineares se inci-
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direm numa mesma reta.

Definição 0.0.3 (concorrência). Duas ou mais retas são concorrentes se incidirem no

mesmo ponto.
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Capítulo L

Primeiros Exemplos de
Geometrias Finitas

'1,.'Í., Geometria dos quatro pontos

Este sistema axiomático, de todos os que iremos apresentar, é o que nos parece
menos complexo, pois partiremos somente de três axiomas e a partir destes ape-
nas demonstraremos um resultado. Começaremos por enunciar os seus axio-
mas, posteriormente introduziremos alguns conceitos como o de consistência,
o de independência e o de dualidade. Este sistema axiomático não satisfaz o
princípio da dualidade mas o seu dual permite-nos definir um novo sistema
axiomático, a geometria das quatro retas.

Axiomas:

Axioma A1: Existem exatamente quatro pontos distintos.

Axioma A2: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma A3: Cada reta tem exatamente dois pontos distintos.

A partir dos três axiomas anteriores, iremos deduzir resultados que nos per-
mitirão conhecer a geometria definida por este sistema axiomático. Para isso é

fundamental que os resultados façam sentido, não nos interessa deduzir atra-
vés deste sistema nenhuma contradição. Introduziremos a este propósito o pró-
ximo conceito.

Definição 1.1.1 (Consistência). Um sistema axiomático diz-se consistente se dele não

for possíoel concluir nenhuma contradição.
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Uma forma de demonstrar a consistência de um sistema axiomático é encon-
trar um modelo que o satisfaça. Com o modelo seguinte facilmente verificamos
que os axiomas não se contradizem.

Consideremos o modelo em que os pontos são as letras A, B, C e D e as retas

são os segmentos de reta AB, AC, AD, BC, B D e C D, representadas na figura
1.1. Um ponto incide numa reta se for uma extremidade de um segmento de

reta. 
C

Figura 1.1: Um possível modelo da geometria dos quatro pontos

Verificamos facilmente que os três axiomas são satisfeitos e portanto o sis-

tema axiomático é consistente.

O nosso objetivo é estudar um conjunto de axiomas que não estão relacio-
nados uns com os outros, de modo a compreender melhor toda a estrutura do
sistema. Para tal introduziremos o conceito de independência.

DeÍinição 1.1.2 (Independência). Num sistema axiomático consistente um axiomq é

independente se não pode ser prooado a partir dos restantes. Se cada axioma do sistema

é independente, então o sistema axiomático diz-se independente.

Para verificar a independência deste sistema axiomático mostraremos a in-
dependência de cada um dos axiomas. Para isso recorreremos a exemplos de
modelos que não verificam o axioma em causa, mas que verificam todos os ou-
tros axiomas.

Modelos que demostram a independência dos axiomas

Nos exemplos seguintes podemos ver que facilmente se cumprem todos os

axiomas com exceção do axioma em questão.

Axioma A1: Existem exatamente quatro pontos.

Exemplo: Consideremos um modelo contendo exatamente dois pontos R e
,S e uma reta incidente nestes pontos (fig. 1.2).

-R ,9

Figura 1.2

76
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1.1 Geometria dos quatro pontos

Axioma A2: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: O modelo constituído pelos pontos P, Q, À e S e pelas retas PQ
e rB^9 (fig. 1.3).

s

Figura 1.3

Este modelo não cumpre o axioma 42, poreue não existe uma reta incidente
nos pontos P e R, por exemplo.

Axioma A3: Cada reta tem exatamente dois pontos distintos.

Exemplo: Consideremos o modelo formado pelos pontos P, Q,lB e ,9, uma
reta incidente nos pontos R, Q, e,9 e as outras três retas incidentes no ponto P
e em cada um dos restantes pontos (fig. 1.4).

Figura 1.4

O modelo não cumpre o axioma A3, pois existe uma reta incidente em três
pontos.

Verificamos que os axiomas Ar, Az e A3 são independentes, logo o sistema

é independente.
Veremos a seguir, uma consequência dos axiomas que é o teorema que se

segue.

Teorema 1.1.3. Existem exatamente seis retas.

Demonstração:

Existem exatamente quatro pontos distintos P, Q, R e ^9, de acordo com o
axioma A1. Aplicando o axioma A2 construímos as seis retas PQ, PR, PS, RQ,
.BS e 8^9 (fig. 1.s).

Figura 1.5
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Suponhamos, com vista a um absurdo/ que existem mais de seis retas, sendo
r uma sétima reta distinta das anteriores. A reta r tem dois pontos, de acordo
com o axioma A3. Esses pontos só podem ser dois dos quatros definidos anteri-
ormente (P, Q, R e ,9), pois não existem mais pontos. Suponhamos, sem perda
de generalidade, que a reta r incide no ponto P. Nesse ponto e em cada um dos
restantes pontos já incide uma reta, e de acordo com o axioma Az a ÍeÍa r teÍá
de ser coincidente com a reta PQ ou P.R ou P,9, mas é absurdo pois a reta r é
distinta das anteriores. Assim existem exatamente seis retas. tr

Será que existem outros modelos que satisfazem este sistema de axiomas?

Poderão existir outros modelos que representem este sistema axiomático,
mas todos eles são equivalentes no sentido da definição seguinte.

Definição 1.1.4. Dois modelos a e B de um sistema axiomático são isomorfos se existir
uma bijeção entre o conjunto de pontos de a e coniunto de pontos de p e uma bijeção

efitre o conjunto de retas de a e o conjunto de retas de 0 de tal modo que são presensadas

todas as relações de incidência.

Se nos inspirarmos na ilustração da fig. 1.5 do teorema 1.1.3 encontramos
um segundo modelo para este sistema axiomático. Consideremos a seguir os

dois modelos (fig. 1.6).

^9

B

Modelo 1 Modelo 2

Figura 1.6

Vamos provar que estes modelos são isomorfos. Comecemos por estabelecer
uma bijeção entre os pontos de ambos modelos.

A++P
B<+Q
C<+S
D<+R

Seguidamente estabeleceremos uma bijeção entre as suas retas. A imagem
da reta AB é a reta que incide nos pontos que são imagem de A e de B, ou seja

areta PQ, e o mesmo se passa com as outras retas.
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1.1. Geometria dos quatro pontos

AB <+ PQ
AC <+ PS
AD ++ PR
BC <+ QS
BD <+ QR
CD <+ SR

Nestas bijeções são preservadas as relações de incidência, logo os modelos
são isomorfos.

Apresentaremos de seguida os conceitos da dualidade.

Definição 1.7.5. Chama-se dual de uma afirmação num sistema axiomático à afirmação

que se obtém trocando os termos ponto e reta.

DeÍinição 1.1.6. Dizemos que um sistema axiomático satisfaz o princípio da dualidade

se o dual de cadq afirmação é também uma afirmação oerdadeira.

Este sistema axiomático não verifica o princípio da dualidade porque fa-
zendo o dual do axioma Ar afirmamos que existem quatro retas, o que é falso,
pois demostrámos no teorema 1.1.3 que existem seis retas. Mais à frente vere-
mos alguns sistemas que satisfazem este princípio.

Iremos de seguida estudar o dual deste sistema axiomático, obtendo um
sistema axiomático diferente a que vamos chamar geometria das quatro retas.

Como seria de esperar todas as afirmações feitas anteriormente são válidas tro-
cando as palavras ponto e reta, isto é, tomando as afirmações duais. O teorema
1.1.7 é dual do teorema 1.1.3 e portanto como o teorema 1.1.3 é válido na ge-

ometria dos quatro pontos, o teorema 7.7.7 é válido na geometria das quatro
retas.

Geometria das quatro retas

Axiomas:

Axioma 81: Existem exatamente quatro retas distintas.

Axioma 82: Dadas duas retas distintas, existe exatamente um ponto em co-

mum.

Axioma 83: Em cada ponto incidem exatamente duas retas distintas.

Enunciaremos seguidamente o dual do teorema 1.1.3, que é válido neste sis-

tema. Não seria necessárÍo fazer a sua demonstração, uma vez que já sabemos

que o teorema é válido. Iremos apresentá-la por uma questão de curiosidade,
para vermos como poderâ ficar utilizando os axiomas anteriores. Naturalmente
será semelhante à do teorema 1.1.3.
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Teorema 1.1.7 (Dual do teorema 7.7.3). Existem exatamente seis pontos.

Demonstração:

Existem exatamente quatro retas distint as r, s, t e u, de acordo com o axioma
81. Como quaisquer duas retas têm um ponto em comum segundo o axioma
82, podemos considerar os pontos A, B, C, D, E e F' comuns às retas r e s, r e t,
r eu, s e ú,,s e u et e u, respetivamente. Têmos assim definidos seis pontos (fig.
1.7).

D

C
U

t

Fig:ra1,.7

Vamos provar que não existem mais do que estes seis pontos. Suponhamos,
com vista a um absurdo, que existe um sétimo ponto G, distinto dos anteriores.
De acordo com o axioma 83, no ponto G incidem exatamente duas retas. Logo
G é o ponto comum de duas retas definidas antcriormente, pois não existem
mais retas. Foram definidos os pontos comuns a cada duas retas e de acordo
com o axioma 82, o ponto G tem de ser um dos pontos Aou B ou C ou D ou
E ou F. Isto é absurdo, pois G é um ponto distinto dos anteriores. Portanto
existem exatamente seis pontos. tr

'/.,.2 Geometria dos três pontos

Neste sistema axiomático, à semelhança do anterior, iniciaremos por introduzir
os axiomas e verificar a consistência e independência do sistema. Definiremos
e demonstraremos alguns resultados importantes. Contrariamente ao sistema
axiomático anterior este sistema satisfaz o princípio da dualidade.

Axiomas:

Axioma C1: Existem exatamente três pontos distintos.

Axioma C2: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma Cs: Nem todos os pontos pertencem à mesma reta.

Axioma Ca: Duas retas distintas têm no mínimo um ponto em comum.

s
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1.2 Geometria dos três pontos

Provaremos a consistência deste sistema axiomático, tal como fizemos na

secção anterior, construindo um modelo. Consideremos o modelo cujos pontos
são A, B e C e as retas são os segmentos de reta AB, AC e BC (fig. 1.8).

B

C

Figura 1.8: Um possível modelo da geometria dos três pontos

À semelhança do que fizemos na secção anterior vamos dar exemplos de

modelos que provam a independência dos axiomas.

Modelos que demostram a independência dos axiomas

Em cada um dos casos facilmente verificamos que se cumprem todos os axi-
omas com exceção do axioma em questão.

Axioma C1: Existem exatamente três pontos distintos.

Exemplo: A geometria dos quatro pontos, que vimos anteriormente, não
verifica este axioma, pois nesta geometria existem exatamente quatro pontos.

Axioma C2: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: Consideremos o modelo formado pelos pontos P, Q e À e por
duas retas, uma incidente nos pontos P e Re outra nos pontos Q e -R (fig. 1.9).

P a

Figura 1.9

Este modelo não verifica o axioma C2 poreue os pontos P e Q são distintos,
mas não incide nenhuma reta em ambos.

Axioma Cs: Nem todos os pontos pertencem à mesma reta.

Exemplo: Este axioma não é verificado por um modelo constituído por uma
reta incidente em três pontos P,8 e,R (fig. 1.10).

Figura 1.10
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Axioma Ca: Duas retas distintas têm no mínimo um ponto em comum.
Exemplo: O modelo constituído pelos pontos P, Q e À e por quatro retas,

a reta r, incidente apenas no ponto À, outra reta incidente nos pontos P e R,
outra nos pontos Q e R eoutra nos pontos P e Q (fig. 1.11).

P

Figura 1.11

Este modelo não verifica o axioma Ca, pois as retas r e PQ são distintas e

não têm nenhum ponto em comum.
Mostrámos que os axiomas C1 , Cz, Cz e Ca são independentes, logo o sistema

é independente.

Enunciaremos e demonstraremos seguidamente algumas afirmações que
são consequência dos axiomas.

Teorema l.2Jl,. Duas retas distintas têm exatamente um ponto em comu.m.

Demonstração:

Sejam r e s duas retas distintas dadas. De acordo com o axioma C4, as r€-
tas r e s têm no mínimo um ponto em comum. Suponhamos/ com vista a um
absurdo, que as retas têm dois pontos P e Q em comum (Íig. 1.72).

P r

Figura 1.12

Se os pontos P e Ç são comuns às retas r e s, então a reta r incide nos pontos
P e Q e a reta s incide nos pontos P e Q. Assim, segundo o axioma C2, as retas r
e s são a mesma porque dois pontos distintos pertencem exatamente a uma reta,
mas isto é impossível pois as retas r e s são distintas. Portanto chegamos a uma
contradição, logo duas retas distintas têm exatamente um ponto em comum. X

Teorema 1.2.2. Cada reta incide exatamente em dois pontos.

Demonstração:

Seja r uma reta qualquer. De acordo com os axiomas Cr e C: existem exata-
mente três pontos distintos e não estão todos sobre a mesma reta, logo a reta r
não pode ter mais de dois pontos. Suponhamos, com vista a um absurdo, que

r

5
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1.2 Geometria dos três pontos

a reta r tem menos de dois pontos. Isto é, ou a reta r incide em exatamente um
ponto ou não tem nenhum ponto. Se a reta r incide em exatamente um ponto P,
então segundo os axiomas C1 e C3 existem outros dois pontos Q e S, distintos
do ponto P, que não pertencem à reta r. Aplicando o axioma C2 construímos as
retas PQ, PS e QS. Segundo o teorema 7.2.1 a reta r e a reta Q,S têm um ponto
emcomum, Q ou S. Assima reta r tem doispontos, o pontoPe oponto de
interseção da reta r com a reta QS, o que é absurdo pois supusemos que tinha
exatamente um ponto. Se a reta r não tem nenhum ponto, então de acordo com
o axioma C1 existem exatamente três pontos Q, S e 7 distintos. Aplicando os
axiomas Cz e Ce construímos as retas 58, ST e Q7. Segundo o teorema 1..2.1,

cada uma das retas SQ, ST, QT e a reta r têm um ponto em comum. Logo
a reta r tem pelo menos um ponto o que é absurdo, pois supusemos que não
tinha pontos.

Assim cada reta incide em exatamente dois pontos. n

Teorema 1.2.3. Existem exatamente três retas.

Demonstração:

De acordo com o axioma C1 existem exatamente três pontos P, Q e B. Os
três pontos não pertencem à mesma reta, segundo o axioma C3. Aplicando o
axioma Cz construímos as três retas PQ, PRe QR (fig. 1.13).

P

Figura 1.13

Vamos provar que não existem mais do que estas três retas. Suponhamos,
com vista a absurdo, que existe uma quarta reta r. A reta r tem exatamente dois
pontos de acordo com o teorema 1.2.2. Esses pontos só podem ser dois dos três
definidos anteriormente (P, Q e À), pois não existem mais pontos. Suponha-
mos, sem perda de generalidade, que a reta r incide no ponto P. Nesse ponto
e em cada um dos restantes pontos já incide uma reta, logo a reta r terá de ser
coincidente com a reta PQ ou PR, mas é absurdo pois a reta r é distinta das
anteriores. Assim existem exatamente três retas. tr

Referimos no início, que este sistema axiomático contrariamente ao anterior
satisfaz o princípio da dualidade, pois trocando os termos ponto e reta vamos
obter afirmaçóes que são verdadeiras neste sistema. Podemos verificar que o
teorema 1.2.3 é o dual do axioma Cr e o teorema 1.2.1 é o dual do axioma C2.
Iremos seguidamente escrever e demonstrar as afirmações duais dos axiomas
C3 e C1.
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Teorema 1.2.4 (Dual do axioma C). Nem todas as retas incidem no mesmo ponto.

Demonstração:

Existem exatamente três pontos P, Q e E, de acordo com o axioma C1. Apli-
cando o axioma Cz, dados dois pontos distintos, existe exatamente uma reta

incidente em ambos, podemos construir as retas PQ, PR e QR. Não existem

mais retas de acordo com o teorema 1.2.3. As três retas PQ, PR e Q.B não têm
nenhum ponto em comum/ portanto não incidem no mesmo ponto. tr

Teorema 1.2.5 (Dual do axioma Cq). Dados dois pontos distintos, existe no mínimo

uma reta incidente em ambos.

Demonstração:
â^
E uma consequência direta do axioma C2

L.3 Geometria dos sete pontos

Esta é uma geometria com mais complexidade que as anteriores. Um facto curi-
oso desta axiomática é que se num modelo retirar uma reta qualquer e os resPe-

tivos pontos, vamos obter outro modelo que satisfaz a axiomática da geometria

dos quatro pontos. Introduziremos esta geometria com os axiomas:

Axiomas:

Axioma D1: Se P e Q são pontos distintos, existe no mínimo uma reta contendo

P eQ.

Axioma D2: Se P e Q são pontos distintos, não existe mais que uma reta con-

tendo P e Q.

Axioma D3: Quaisquer duas retas têm no mínimo um ponto em comum.

Axioma Da: Existe no mínimo uma reta.

Axioma D5: Cada reta tem no mínimo três pontos.

Axioma D6: Nem todos os pontos pertencem à mesma reta.

Axioma D7: Nenhuma reta contém mais de três pontos.

À semelhança dos sistemas axiomáticos anteriores iremos dar um exemplo

de um possível modelo para provar a consistência deste sistema axiomático.

Consideremos o modelo a seguir em que os pontos são as letras P, Q, R, S,T,
U eV, as retas são os segmentos de reta PQ, PS, PV, RQ, SQ e ST e existe

uma reta que está representada por uma curva que passa pelos pontos R, T e

T
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1.3 Geometria dos sete pontos

a
Figura 1.14: Um possível modelo da geometria dos sete pontos

I/. Um ponto incide numa reta se pertence a um segmento de reta. Este modelo
será construído pormenorizadamente mais à frente no teorema 1,.3.7 (hg. 1,J,$.

Tal como nas secções anteriores iremos dar exemplos de modelos que de-
monstram a independência dos axiomas.

Modelos que demostram a independência dos axiomas

Para cada exemplo facilmente se verifica que se cumprem todos os axiomas
com exceção do axioma em questão.

Axioma D1: Se P e Q são pontos distintos, existe no mínimo uma reta con-
tendo P e Q.

Consideremos o exemplo do modelo constituído pelos pontos P, Q, R, S,
T e V e por quatro retas, que estão representadas como colunas na seguinte
tabela.

Podemos representar este modelo (fig. 1.15).

P

a

Figura 1.15

Este exemplo não verifica o axioma D1, pois não existe nenhuma reta inci-
dente nos pontos P e R.

Axioma D2: Se P e Q são pontos distintos, não existe mais que uma reta
contendo P e Q.

PPA^9
aT RR
SVVT

s

T

,.J

..:-
,..-..j

. , "*i"

I rr" ''
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Vejamos o exemplo de um tetraedro de vértices P, Q, R e ,S, no qual as faces

representam retas. Tal como no exemplo anterior voltamos a utilizar uma tabela
em que as colunas de pontos representam retas.

Assim representamos o tetraedro na figura 1.16.

P

T

a R
Figura 1.16

Existem duas retas (faces do tetraedro) distintas que contêm os pontos P e

Q, logo não verifica o axioma D2. Tal como foi referido na introdução os ter-
mos ponto e reta são termos não definidos, logo podem ser representados por
diferentes objetos. Este é um bom exemplo disso, uma vez que as retas são

representadas pelas faces do tetraedro.

Axioma D3: Quaisquer duas retas têm no mínimo um ponto em comum.

Exemplo: Para construir o modelo seguinte consideramos nove pontos

(Ar, Az,. . . , As) e as retas na coluna da tabela.

Podemos verificar que a reta formada pelos pontos A1, A2 e á3 e a reta for-
mada pelos pontos Aa' As e Á6 não têm nenhum ponto em comum, logo o axi-
oma D3 não se verifica.

Axioma Da: Existe no mínimo uma reta.

Exemplo: Um modelo com um único ponto não verifica este axioma.

Axioma D5: Cada reta tem no mínimo três pontos.

Exemplo: Consideremos um triângulo de vértices P, Q e Â em que os vérti-
ces estão no papel de pontos e os lados no papel de retas (hg. 1,.17).

a

PPPA
AARR
RT T T

A1 A1 A1 A1 A2 A2 A2 A3 A3 A3 Aa A7

A2 Aa A5 A6 A5 Aa A6 Aa A5 A6 A5 As

A3 A7 As As As As A7 As A7 As A6 As
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1.3 Geometria dos sete pontos

Cada reta (lado do triângulo) tem exatamente dois pontos, assim o axioma
D5 é não verificado.

Axioma D6: Nem todos os pontos pertencem à mesma reta.

Exemplo: O modelo formado por uma única reta contendo três pontos P, Q
e.R não verifica este axioma pois todos os pontos pertencem à mesma reta (fig.
1.18).

Figura 1.18

Axioma D7: Nenhuma reta contém mais de três pontos.

O exemplo de um plano projetivo de ordem três no qual cada reta tem quatro
pontos não verifica este postulado. Este exemplo será abordado no capítulo
seguinte.

Mostrámos que os axiomas Dt,D2,D3,Dq, Ds, De e D7 são independentes,
logo o sistema é independente.

Na secção referente à geometria dos quatro pontos, vimos que este sistema
axiomático não satisfaz o princípio da dualidade, pois ao fazermos o dual de
alguns axiomas obtemos afirmações que não são verdadeiras. Vamos ver neste
sistema axiomático que todas as afirmações duais dos axiomas podem ser de-
monstradas. Os teoremas que se seguem são os duais dos axiomas definidos
anteriormente, à exceção dos axiomas D1 e D3 que são duais um do outro.

Teorema 1.3.1 (Dual do axioma D2). Duas retas distintas têm um único ponto em

cofnum.

Demonstração:

Duas retas quaisquer têm no mínimo um ponto de acordo com o axioma D3.

Sejam r e s duas retas distintas e P um ponto comum a ambas. Suponhamos,
com vista a um absurdo que as retas r e s têm dois pontos distintos em comum,
o ponto P e o ponto,R (fig. 1.19).

,9 P R r

Figura 1.19

De acordo com o axioma D2, não existe mais que uma reta contendo P e R,
logo as retas r e s são a mesma, o que é absurdo pois foi suposto que as retas r
e s são distintas. Assim as duas retas têm um único ponto em comum. tr

Teorema 1.3.2 (Dual do axioma D). Existe no mínimo um ponto.
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Demonstração:

Segundo o axioma D4, existe no mínimo uma reta, mas cada reta contém no
mínimo três pontos de acordo com o axioma D5. Então no mínimo existe um
ponto. tr

Teorema 1.3.3 (Dual do axioma D). Num ponto incidem no mínimo três retas.

Demonstração:

Seja P um ponto dado. No mínimo existe uma retar, pelo axioma Da. Po-

demos considerar dois casos:

1. o ponto P pertence à reta r;

2. o ponto P não pertence à reta r.

Caso 1: Se o ponto P pertence à reta r, então segundo os axiomas Ds e Dz,

para além do ponto P existem mais dois pontos ,R e S na reta r. De acordo
com o axioma D6, existe um ponto I que não pertence à reta r. Aplicando os

axiomas D1 e D2 construímos as retas PQ, RQ e.9Ç (fig. 1.20).

r

a

Figura 1.20

Mas cada uma das retas anteriores tem três pontos, pelos axiomas Ds e Dz.

Sejam T,U e 7 pontos pertencentes respetivamente às retas PQ, RQ e SQ,
distintos dos pontos já mencionados. De acordo com os axiomas D1 e D2, pelos
pontos P e U passa exatamente uma reta pois são distintos e não colineares.
Logo pelo ponto P passam as retas PD, r e PU, ou seja três retas.

Caso 2: como o ponto P não pertence à reta r, então de acordo com os axio-
mas D5 e Dz a reta r tem exatamente três pontos Q, Re S. Aplicando os axiomas
D1 e D2 podemos definir as retas PQ, PRe PS incidindo assim no ponto P três

retas. tr

Teorema 1.3.4 (Dual do axioma D). Nem todas as retas passam pelo mesmo ponto.

Demonstração:

Seja I um ponto dado. De acordo com o axioma D4 existe no mínimo uma
reta r. Podemos ter dois casos:

1. o ponto Q não pertence à reta r

2. o ponto Q pertence à reta r.
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1.3 Geometria dos sete pontos

Caso L: Se o ponto Q não pertence à reta r, então segundo os axiomas D5

e D7, existem exatamente três pontos P, R e S na reta r. De acordo com os
axiomas D1 e D2 definimos as retas PQ, RQ e SQ @g.l.2l).

r

a

Figura 1.21

Portanto existe uma reta r que não passa pelo ponto Ç.

Caso 2: como o ponto I pertencer à reta r, segundo os axiomas Ds êDz,
para além do ponto Q existem mais dois pontos lB e S na reta r. De acordo com
o axioma D6, existe um ponto 7 não pertencente à reta r. Pelos axiomas D1 e
D2 definimos as retas TQ, RT e ST (hg.7.22).

R r

T

Fig:la1.22

Verificamos que existe uma reta, por exemplo, RT que não passa pelo ponto
A.n
Teorema 1.3.5 (Dual do Axioma D7). Não passam mais de três retas pelo mesmo

ponto.

Demonstração:

Seja dado um ponto P . De acordo com o teorema 1.3.3 no ponto P incidem
no mínimo três retas r, s et distintas. Suponhamos que no ponto P incide uma
quarta reta u diferente das anteriores. Pelo teorema L.3.4, nem todas as retas
passam pelo ponto P. Seja u uma reta que não passa pelo ponto P. Como as

quatro retas que passam por P são distintas da reta ,u, então pelo teorema 1.3.1

têm um ponto em comum com a reta u. Sejr- A, B, C e D os pontos em comum
das retas r, s, t e u e da reta u respetivamente (hg. 1.23).

Os pontos são distintos porque as retas r , s, t e u iá têm um ponto em comum
e não podem ter outro como consequência do teorema L.3.1. Assim a reta o tem
quatro pontos o que contradiz o axioma D7. Portanto não passam mais de três
retas pelo mesmo ponto. tr

Verificámos que todas as afirmações duais dos axiomas são demonstráveis,
logo este sistema axiomático satisfaz o princípio da dualidade (definição 1.1.6).
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t

Figura 1.23

Teorema 1.3.6. Esta geometria contém exatamente sete pontos.

Demonstração:

De acordo com o axioma Da, existe no mínimo uma reta r. Esta reta contém
exatamente três pontos P, R e S distintos, pelos axiomas D5 e D7. De acordo
com o axioma D6 existe um ponto Q não pertencente à reta r. Aplicando os

axiomas D1 e D2 construímos as retas P8, RQ e,SQ. Como cada uma das retas

anteriores tem três pontos, pelos axiomas D5 e D7, consideremos os pontos 7,
U e V pertencentes, respetivamente, às retas PQ, RQ e ,SQ. Definimos sete

pontos, vamos provar que não existem mais pontos. Suponhamos, com vista a
um absurdo, que existe um oitavo ponto 1( diferente dos anteriores. Como 1( e

Q são pontos distintos, pelos axiomas D1 e D2, existe exatamente uma reta I{Q
incidente em ambos. No ponto Q incidem quatro retas, PQ, RQ, SQ e KQ o
que contradiz o teorema 1.3.5. Portanto existem exatamente sete pontos nesta
geometria.

tr

Teorema 1.3.7 (Dual do teorema T). Esta geometria contém exatamente sete retas

Demonstração:

Na demonstração do teorema 1.3.6 provámos que existem exatamente sete

pontos. Comecemos tendo por base a demostração do teorema 1.3.6, na qual
definimos os pontos P, R, S, Q, T, U e V e as retas r, P Q, RQ, S Q com o objetivo
de provar que existem exatamente sete retas.

De acordo com os teoremas 1.3.3 e 1.3.5 por cada ponto passam exatamente
três retas. Pelo ponto Q passam as retas PQ, RQ e SQ. Pelo ponto P passam
as retas r e PQ, falta definir uma terceira reta. Pelos pontos P e (/ passa exata-
mente uma reta e pelos pontos P e V também passa exatamente uma reta, de
acordo com os axiomas D1 e D2. Estas retas não podem ser distintas pois pelo
ponto P só passam três retas, segundo o teorema 1.3.5. Definiu-se assim a reta
PUV (hg. 7.24). Por processo análogo define-se as retas SUT e -R77. Defini-
mos as sete retas PQ, RQ, SQ, r, PUV, SUT e RTV (hg.1.25). Provaremos
seguidamente que não existem mais retas. Suponhamos, com vista a um ab-
surdo que existe uma oitava reta, m. De acordo com os axiomas D5 e D7 a reta
m tem exatamente três pontos, N, O e 1{. A reta m náo pode conter nenhum
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1.3 Geometria dos sete pontos

dos outros pontos, pois em cada um deles já passam três retas. Definiu-se nove
pontos P, Re S, Q,V, U,T, N, O e K o que não pode ser, pois contradiz o
teorema 1.3.6. Assim esta geometria só tem sete retas.

Figora1.24

Figura 1.25

Um aspeto interessante desta axiomáttcaé o facto de que ao retirar uma reta
qualquer e os respetivos pontos a um modelo da geometria dos sete pontos,
vamos obter outro modelo que satisfaz a axiomática da geometria dos quatro
pontos/ secção (1.1). Observemos na figura 1.26.

R

a a

Modelo 1 Modelo 2

Figtra'1.26

Por exemplo, se no modelo 1, retirarmos a reta RTV e os respetivos pontos
vamos obter o modelo 2, modelo este que satisfaz a axiomática da geometria

r

a

r

a

r
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dos quatro pontos e como tal é isomorfo aos modelos apresentados na secção

1.1.

'1,.4 Geometria dos nove pontos e doze retas

Esta geometria, à semelhança das anteriores, será introduzida por axiomas e

a partir destes enunciaremos e demonstraremos alguns resultados. Finalizare-
mos enunciando um teorema clássico atribuído a Papo de Alexandria. Para tal
necessitámos de adaptar as definições de polígono e lado oposto de um hexá-
gono que sabemos da geometria euclidiana à geometria finita.

Os axiomas para esta geometria são:

Axioma E1: Se P e Q são pontos distintos, existe uma reta contendo os pontos
PeQ.

Axioma E2: Se P e Q são pontos distintos, não existe mais do que uma reta

contendo P e Q.

Axioma E3: Dada uma reta r que não contém um ponto P, existe uma reta
contendo o ponto P e não contendo nenhum ponto da reta r.

Axioma Ea: Dada uma reta r que não contém um ponto P,não existe mais que
uma reta contendo o ponto P e não contendo nenhum ponto da reta r.

Axioma E5: Cada reta tem no mínimo três pontos.

Axioma E5,: Nem todos os pontos pertencem à mesma reta.

Axioma E7: Existe no mínimo uma reta.

Axioma Es: Nenhuma reta contém mais de três pontos.

À semelhança do que foi feito nos sistemas axiomáticos anteriores iremos
dar um exemplo de um possível modelo para mostrar a consistência deste sis-

tema axiomático. Este modelo será construído pormenorizadamente mais à

frente na demonstração do teorema 1.4.4. Consideremos o modelo em que os

pontos são as letras K, P, Q, R, S,T,V,W e Z, as retas são os segmentos de
reta RQ, RT, RV, PS,TQ, QV, K Z eTV e existem retas que estão representa-
das por curvas que passam pelo terno de pontos (R, Z,S), (P, K,V), (P,Q, Z)
e (K,T,S) representados na hryxa1..27.
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1.4 Geometria dos nove pontos e doze retas

P

Z

a V

Figtral.2T

Modelos que demostram a independência dos axiomas

Tal como fizemos nos sistemas axiomáticos anteriores iremos dar um exem-
plo de modelo que demonstra a independência de cada axioma e facilmente se

verifica que se cumprem todos os axiomas com exceção do axioma em questão.

Axioma Er: Se P e Q são pontos distintos, existe uma reta contendo os pon-
tosPeQ.

Exemplo: O modelo compostopelos pontos P,Q, R, S,T eV e apenas pelas
duas retas PQS e RTV não verifica o axioma E1.

Axioma E2: Se P e Q são pontos distintos, não existe mais que uma reta
contendo P e Q.

Exemplo: O modelo constituído por seis pontos P, Q, R, S, T e [/ e pelas
vinte retas seguintes:

PSR, PQS, PQT, PQU, PRS, PRT, PRU, PST, PSU, PTU,QRS,QRT,
QRU,QRT,QSU,QTU, RST, RSU, RTU E STU.

Este modelo não verifica o axioma E2,pois, por exemplo, existe mais do que
uma reta contendo os pontos P e Q.

Axioma E3: Dada uma reta r que não contém um ponto P, existe uma reta
que contém o ponto P e não contendo nenhum ponto da reta r.

Exemplo: A geometria dos sete pontos não verifica este axioma, pois duas
retas distintas têm um ponto em comum.

Axioma Ea: Dada uma reta r que não contém um ponto P,náo existe mais
que uma reta contendo o ponto P e não contendo nenhum ponto da reta r.

Exemplo: Consideremos o modelo formado pelos pontos F, H, K, M, P, Q,
R, S,T,U,V,W, X,Y e Z epelas trinta e cinco retas seguintes.

PST, PRZ, PHK, PMQ, PWY, PFV, PUX,QTU,QSW,QKV,QXZ,
Q HY, Q F R, RUV, RH S, RT X, RKW, RMY, S M X, SVY, S KU, S F Z, T F K,
TYZ,TMV,THW,UWZ, FUY,UHM,VWX, HVZ, KXY, KMZ, FMW,
FHX,
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Consideremos a reta PST e o ponto Q que não pertence a esta reta. No ponto

Q incidem as retas MQR e QX F que são paralelas a PST,logo o modelo não
verifica o axioma E+.

Axioma E5: Cada reta tem no mínimo três pontos.

Exemplo: Um quadrângulo completo não verifica este axioma, pois cada

reta só tem dois pontos.
Retas do quadrângulo: (PR), (PS), (PQ), @S), (RQ), $Q).

Axioma E6: Nem todos os pontos pertencem à mesma reta.

Exemplo: Um modelo composto só por três pontos e uma reta incidente em
todos eles não verifica o axioma E5,, pois não existe um ponto exterior a uma
reta. (fig. 1.28).

Figura 1.28

Axioma E7: Existe no mínimo uma reta.

Exemplo: Um modelo em que só existe um único ponto não verifica este

axioma pois não existem retas.

Axioma Es: Nenhuma reta contém mais de três pontos.

Exemplo: Geometria euclidiana plana, na qual cada reta tem infinitos pon-
tos não verifica este axioma.

Verificámos que os axiomas E1.,Ez,E3,E+,E5,E6, E7 e Es são independentes,
logo o sistema é independente.

Esta geometria não satisfaz o princípio da dualidade porque, por exemplo,
por cada dois pontos distintos passa sempre uma reta, mas duas retas distintas
podem não ter um ponto em comum.

Vamos deduzir alguns resultados a partir dos axiomas.

Teorema 1.4.1. Existem exatamente noae pontos.

Demonstração:

Existe no mínimo uma reta r, de acordo com o axioma Ez. A reta r tem
exatamente três pontos R, P e 7 distintos, pelos axiomas E5 e Es. Segundo o

axioma E6 existe um ponto I que não pertence à reta r. Aplicando o axioma E3

existe uma reta s que contém o ponto Q e não contém nenhum ponto da reta r.
A reta s tem exatamente três pontos, de acordo com os axiomas Es e Es, o ponto

Q e dois outros pontos, S e V (fig. 1,.29).

Por dois pontos distintos passa uma reta, de acordo com os axiomas E1 e

E2, €rÍr particular, podemos definir areta RQ. A reta -BQ tem três pontos, de
acordo com os axiomas E5 e Es, ao terceiro ponto desta reta podemos chamar
I{. Também podemos considerar as retas PS e PV, facilmente verificamos se-

rem distintas. No máximo uma delas incide no ponto K. Suponhamos, sem
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1.4 Geometria dos nove pontos e doze retas

RPTr----#

^O^S-Vs
Figura7.29

perda de generalidade, que a reta P,S não incide no ponto /{, portanto existe
um terceiro ponto W-nesta reta (fig. 1.30).

P

W

s

Tr

V.s

r

Vs

Figura 1.30

De acordo com o axioma E3 existe uma reta j que incide no ponto T e é pa-
ralela à reta RQ. A reta j interseta a reta s, de acordo com o axioma Ea, pois
já existe uma reta que passa pelo ponto 7 paralela à reta s. A reta j não pode
incidir no ponto S, pois as retas RQ e PS são paralelas e se assim fosse existi-
riam duas retas paralelas a RQ U e P S) incidentes no ponto ,S, contrariando o

axioma Ea. Portanto areta j interseta a reta s no ponto V, e podemos designáJa
por TV. A reta TV é paralela à reta P,S, pois se intersetasse a reta PS no ponto
I4l, existiriam duas retas, P,9 e TV, paralelas a -RQ passando no ponto W, o
que contraria o axioma Ea. De acordo com os axiomas E5 e Es a reta 7V tem
um terceiro ponto Z (Íig.1,.31).

Figura 1.31

Verificámos que existem nove pontos. Vamos provar a seguir que não exis-
tem mais. Suponhamos, com vista a um absurdo, que existem pelo menos dez
pontos. Seja II um décimo ponto, distinto dos anteriores. De acordo com os axi-
omas E1 e E2 podemos definir areta HQ. Esta reta só tem mais um ponto, por
isso só pode intersetar no máximo uma das retasTV ou PS. Se não intersetar
a reta PS incidem no ponto Q duas retas paralelas à reta PS o que contraria o

axioma E+. Se não intersetar a reta ?Y chegamos a igual contradição. Portanto
existem exatamente nove pontos. tr

Teorema 1.4.2. Cada reta admite exatamente duas retas paralelas
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Demonstração:

Seja r uma reta dada. Pelos axiomas E5 e E3, â rêtâ r contém exatamente três
pontos P, R e,S distintos. De acordo com o axioma E6 existe um ponto I que
não pertence à reta r e em consequência, pelos axiomas E3 e E4, existe uma reta
ú que contém o ponto Q e não contém nenhum ponto da reta r. A reta ú contém
o ponto Q e mais dois, 7 e V, segundo os axiomas E5 e Es (dr'g. 1.32).

_P -R ^,5 r

Figura 1.32

Cada dois pontos distintos pertencem exatamente a uma reta, de acordo
com os axiomas E1 e E2, logo por exemplo podemos definir areta PQ. Esta reta
tem exatamente três pontos, Q, P e um outro ponto I4l. A reta r não contém
o ponto W, entáo pelos axiomas E3 e E4, existe exatamente uma reta rn que
passapor W eéparalelaar. Esta reta édiferenteda retat, poisoponto W não
pertence à reta t (fig. 1.33).
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Figura 1.33

Verificámos que existem duas retas paralelas à reta r, seguidamente prova-
remos que não existe mais nenhuma. Suponhamos, com vista a um absurdo,
que existem três retas paralelas à reta r. Seja u uma terceira reta paralela à reta
r. De acordo com os axiomas E5 e 83, a reta u tem três pontos. Esta tem, no
máximo, um ponto em comum com as retas m e ú, logo existe pelo menos um
ponto não pertencente às retas m, r e ú. Assim existe um décimo ponto, o que
contraria o teorema anterior. Concluímos então que a reta r tem exatamente
duas retas paralelas a si. n

Teorema '1,.4.3. Duas retas paralelas a uÍfia terceira reta são paralelas entre si.

Demonstração:

Sejam dadas as retas r, s e t distintas, tais que as retas r e ú são ambas para-
lelas à reta s. Suponhamos, com vista a um absurdo, que as retas r e ú têm um
ponto P em comum. Pelo ponto P passam duas retas paralelas à reta s, o que
contraria o axioma Ea. Assim as retas r, s e t são paralelas entre si. n

Teorema 1.4.4. Existem ücatamente doze retas.
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1.4 Geometria dos nove pontos e doze retas

Demonstração:

No mÍnimo existe uma Íeta r, pelo axioma E7. De acordo com o teorema
1.4.2, existem exatamente duas retas s e ú paralelas à reta r. Segundo os axiomas
E5 e Es, cada uma das retas anteriores tem três pontos distintos. Consideremos
os pontos R, P e 7 pertencentes à reta r, os pontos Q, S e V pertencentes à reta
s e os pontos K, W e Z pertencentes à reta t. Observemos que, de acordo com
o teorema 1.4.1 não existem mais pontos para além destes(fig. 1.34).

W Zt
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V,s
Figura 1.34

Os axiomas E1 e E2 permitem-nos definir a reta RQ. Nem o ponto P nem
o ponto 7 podem incidir na reta -RQ pois caso contrário pelos axiomas E1 e E2,

as retas r e RQ seriam a mesma. Analogamente nem o ponto S nem o ponto
I/ incidem em RQ. Como a reta RQ tem um terceiro ponto, sabemos que esta
incide num dos pontos K,W ou Z. Sem perda de generalidade supomos que o
ponto K incide na rcta RQ. Segundo os axiomas E3 e E4, no ponto P incide uma
retam paralela àreta RQ. O ponto 7 não pode pertencer à Íetam, senão as retas

rn e r seriam a mesma pelos axiomas Er e E2, logo no ponto 7 tem de incidir
outra reta j paralela a RQ. A reta m tem três pontos e não existem mais pontos
para além dos nove já referidos, como vimos, logo a reta m tem de intersetar
as retas ú e s. Portanto a reta rn incide no ponto W ott Z da reta ú e no ponto,S
ou V da reta s. Sem perda de generalidade supomos que a reta m incide nos
pontos W e S. As retas m e j são paralelas à reta RQ,logo pelo teorema 1.4.3

são paralelas entre si. Assim a reta j tem de incidir nos pontos Z e V. Por um
processo análogo podemos construir as retas RZS, RWV, PKV, PZQ,TKS e

TWQ.Temos definidas as doze retas: r, s,t, RKQ, PWS,TZV, RWV, RZS,
PKV, PZQ,TKS erWQ (fig. 1.35).

Vamos provar que não existem mais retas. Suponhamos, com vista a um
absurdo, que existem, no mínimo, treze retas, sendo i a décima terceira. De
acordo com os axiomas E5 e Es, a reta i tem três pontos. Como só existem nove
pontos de acordo com o teorema 1.4.1, então os três pontos da reta i são três
dos pontos anteriormente definidos. Suponhamos, sem perda de generalidade,
que a reta i incide no ponto I/. Como o ponto V é colinear com cada um dos
restantes pontos já definidos R, P,T,Q, S, K,W e Z, então a rctai,é uma das
retas definidas anteriormente. Mas nós supusemos que arctai é diferente das
anteriores. Chegamos a uma contradição, portanto existem exatamente doze
retas. tr

No próximo teorema vamos trabalhar com um polígono. No entanto, nas
geometrias finitas não é possível definir um segmento de reta (este é um con-
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Figura 1.35

ceito da geometria euclidiana que não faz sentido neste ambiente) e portanto
a dcfinição usual de polígono não podc ser aqui utilizada. Como queremos
definir polígono, vamos ter de adaptar a definição às geometrias finitas.

DeÍinição "1..4.5. Chama-se polígono fi uma sequência de retas A1A2, A2A3, AzAs,
. . ., AnAt em que At, Az, A3, Aq, . . ., An são n pontos distintos. Aos pontos At, Az,
Az, As, . . ., An aamos chamar aértices do polígono e às retas A.1A2, A2A3, A3Aq,.. .,

AnAl os lados do polígono.

Vejamos dois exemplos de polígonos que têm por base a definição anterior
(fig. 1.36).

C

quadrilátero ABCD pentágono ABCDE

Figura 1.36

Como no próximo teorema vamos precisar do conceito de lado oposto de
um hexágono e na definição anterior nada foi referido em relação a esse con-
ceito, vamos a seguir definir lado oposto de um hexágono.

Definição 1.4.6. Num hexágono o lado \ é oposto ao lado 12 se o lado 11 não for adja-

cente ao lado ly nem adjacente a nenhum lado que seja adjacente a este último.

Vamos enunciar um teorema clássico atribuído a Papo de Alexandria. No
capítulo 2 iremos novamente encontrar este teorema/ mas numa axiomática di-
ferente.

j

E
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1.4 Geometria dos nove pontos e doze retas

Teorema 1.4.7 (Têorema de Papo). Sejam r e s duas retas paralelas e sejam R, P e

T os trêspontos daretar e Q, S eV ostrêspontos de s. Seoslados opostos dohexágono

RSTQPV se intersetarem então os três pontos de interseção são colineares.

Demonstração:

Os lados do hexágono RSTQPV são as retas -8,S, ST,TQ, QP, PV eVR
(fi9. 1.37). O lado oposto ao lado RS é 8P, o lado oposto ao lado RV é TQ, o
lado oposto aolado PV é 7S. Suponhamos que a reta.RS interseta a reta PQ no
ponto K, areta.Rl/ interseta a reta TQ no ponto W e areta PV interseta a reta
7S no ponto Z (ver fig. 1.38). Segundo o teorema 1.4.2 a reta r tem exatamente
duas retas paralelas, uma é a reta s e à outra reta podemos chamar-lhe ú. Esta

reta ú tem exatamente três pontos de acordo com os axiomas E5 e Es. Esses

pontos só poderão ser K, W e Z, pois o nosso modelo já tem exatamente nove
pontos definidos e não poderá ter mais segundo o teorema 1.4.1, e os outros seis
pontos R, P, T, Q, S e tr/ incidem ou na reta r ou na reta s. Assim a reta ú incide
nos pontos K,W e Z. Portanto os três pontos K,W e Z de interseção dos lados
opostos são colineares (ver fi9. 1.39). n

T r

Figara 7.37
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Figura 1.38
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Capítulo 2

Duas Configurações da
Geometria Clássica

2.1 Configuração de Desargues

Gerard Desargues, que viveu entre 21 de fevereiro de 1591 e setembro de7661,
foi um matemático e engenheiro francês. É considerado um dos fundadores
da geometria projetiva.l A sua principal obra foi "Brouillon project d'une at-
teinte aux evenemens des rencontres du Cone avec un Plan" em 1639. Um dos
seus trabalhos mais conhecidos é o resultado a que hoje chamamos Têorema de

Desargues.

Vamos nesta secção trabalhar a axiomática da Configuração de Desargues.

Este sistema axiomático, tal como foi dito na introdução, apresenta uma relação
interessante entre pontos e retas que é a de polaridade. É com a explicação
desta relação que iniciaremos esta secção. Finalizaremos com o teorema que dá

o nome a esta axiomática: Têorema de Desargues.

DeÍinição 2.1.1. Sejam m uma reta e M um ponto. Se não existe nenhuma reta à qual

pertença o ponto M e que tenhn pontos sm comum com rrl, dizemos que a reta m é polar

de M eoponto M épólodem.

Axiomas:

Axioma F1: No mínimo existe um ponto.

Axioma F2: Cada ponto tem no mínimo uma polar.

Axioma F3: Cada reta tem no máximo um pólo.

Axioma Fa: Dois pontos distintos estão no máximo sobre uma reta.

lUma bibliografia de Desargues pode ser consultada em
http://unttw-history.mcs.st-andrews.ac.uk/historylBiographies/Desargues.html
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Axioma F5: Existem exatamente três pontos distintos em cada reta.

Axioma F6: Se uma reta m náo contém um ponto P, então existe um ponto
comum a m e aqualquer polar de P.

Teorema 2.'L.2. Se P pertence a uma reta polar de Q , então qualquer polar de P contém

a.

Demonstração:

Seja q uma polar de Q. Por definição Q não pertence a S. Seia P um ponto
de q. Pelo axioma Fs, existem exatamente três pontos distintos em q, um deles
é P e aos outros dois chamaremos -B e ^9 

(fig. 2.1).

PRS
q

I
Figura 2.1

De acordo com o axioma F2, existe no mínimo uma polarp de P. Suponha-
mos, com vista a um absurdo, que Q não pertence a p. Se Q náo pertence a p,

pelo axioma Fo, p e q têm um ponto em comum, que pode ser R, 
^9 

ou P, pois
estes são os pontos de q. Mas por definição P não pertence a p. Se ,R ou ,S per-
tencem a p então existe um ponto em comum entre uma reta que contém P e

uma sua polar, o que contradiz a definição de pólo e polar. Assim Q pertence a

p.X

Teorema 2.7.3. Cada ponto tem exatamente uma polar.

Demonstração: Um ponto P dado tem no mínimo uma polar, de acordo com

axioma F2. Suponhamos, com vista a um absurdo, que P tem duas polares p
e p1. De acordo com o axioma F5, existem três pontos distintos em cada reta,
em particular, a reta p1 tem três pontos. Segundo o axioma F4, no máximo um
destes pontos pode pertencer ap. Consideremos um ponto 7 pertencente à reta
p1 e não à reta p. Existe uma reta ú polar de 7, segundo o axioma F2. Como o
ponto 7 pertence a uma polar de P, pelo teorema 2.7.2, o ponto P pertence à

reta ú. Como aretap não contém o ponto 7, então existe um ponto em comum
às retas p e t, pelo axioma F5 ftç.2.2).

A reta ú contém o ponto P e as retas ú e p têm um ponto em comum, o que
contradiz a definição de polar. Assim o ponto P não pode ter mais de uma
polar. I
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2.1 Configuração de Desargues

P

T

Figura2.2

Teorema 2.1.4. Cada reta tem exatamente um pólo.

Demonstração:

Seja dada uma reta p. Como, pelo axioma F3, a reta p tem no máximo um
pólo, basta-nos verificar a existência de um pólo de p. De acordo com o axioma
Fs, existem exatamente três pontos R, S e 7 distintos em p. Os pontos i? e ,S têm
exatamente uma polar, pelo teorema2.1,.3. Sejam r e .s as polares dos pontos rB
e ^9, 

respetivamente. A reta r não contém o ponto S, porque ,S pertence à reta
p e se S pertencesse à reta r, então as retas p e r teriam um ponto em comum o
que contraria a definição de pólo e polar. Portanto, pelo axioma F6,, existe um
ponto P comum às retas r e s (fig. 2.3).

R
^9

Figura 2.3

Segundo o teorema 2.7.3, o ponto P tem exatamente uma polar. Como o
ponto P pertence às retas r e s, de acordo com o teorema 2.1..2, os pontos ,B e ,S

pertencem à polar de P.
Assim péapolar dePePopólodep. !

Verificaremos, a seguir, que a Configuração de Desargues também é um sis-

tema axiomático que satisfaz o princípio da dualidade.

Teorema 2.1.5 (Dual do axioma F1). No mínimo existe umareta.

Demonstração:

Pelo axioma F1 existe um ponto P. Aplicando teorema 2.'L.3, o ponto P tem

exatamente uma polar, portanto existe pelo menos uma reta. n

Teorema 2.1.6 (Dual do axioma F). Cada reta tem no mínimo umpólo

Demonstração:

p

t

Pt

T p

P
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Pelo teorema 2.1..4, cada reta tem exatamente um pólo, logo verifica-se a
existência de pelo menos um pólo. ü

Teorema 2.1.7 (Dual do axioma fu). Cada ponto tem no máximo uma polar.

Demonstração:

Cada ponto tem exatamente uma polar, de acordo com o teorema 2.7.4,1ogo
cada ponto tem no máximo uma polar. tr

Teorema 2.1.8 (Dual do axioma F). Duas retas distintas têm no máximo um ponto
efil comum

Demonstração:

Sejam s e r duas retas distintas. Suponhamos, com vista a um absurdo,
existirem dois pontos P e Q incidentes nas retas s e r. Aplicando o axioma F+,

P e Q estão no máximo sobre uma reta, o que contraria a hipótese de incidirem
nas retas s e r. Assim duas retas distintas têm no máximo um ponto em comum.
tr

Teorema 2.1.9 (Dual do axioma F). Por cada ponto passam exatamente três retas

distintas.

Demonstração:

Dado um ponto P, de acordo com o teorema 2.1.3, P tem exatamente uma
polar p. Têndo em atenção o axioma F5, a reta p tem exatamente três pontos
distintos R, S e 7. Segundo o teorema 2.1.3, existem as polares r, s e ú res-
petivamente dos pontos R, S e 7. De acordo com o teorema 2.1.2 o ponto P
pertence a r, s e t (hg. 2.q.

st
r

R T,S p

Figura2.4

Suponhamos, com vista a um absurdo, que existe uma reta q distinta das
retas incidentes no ponto P. Se a reta q incide no ponto P, então pelo teorema
2.1..2, o pólo de q(Q) pertence à polar de P. Os pontos R, S,T e Q são distintos
porque cada pólo tem uma única polar, de cordo com o teorema 2.1.3. A polar
de P contém quatro pontos R, S,T e Q o que contradiz o axioma F5. Conclui-se
assim que pelo ponto P passam exatamente três retas. tr
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2.1 ConÍiguração de Desargues

Teorema 2.1.10 (Dual do axioma F). Se o ponto P não pertence à reta m, então
existe uma reta que contém P e qualquer pólo de m.

Nota 2.1.11. Concluímos anteriormente que qualquer reta tem exatamente um
pólo e portanto a expressão "qualquer pólo de m" refere-se ao único pólo de
rn. Como este enunciado é o dual do axioma F5,, optámos por deixar o texto
inalterado fazendo apenas a troca de ponto por reta e vice-versa.

Demonstração:

S"ju* dados uma reta rn e um ponto P não incidente ern m. A reta m tem
exatamente um pólo M, pelo teorema 2.1.4. Para demonstrar o teorema quere-
mos encontrar uma reta incidente nos pontos M e P. Podemos considerar dois
casos distintos:

7. MePsãoomesmoponto;

2. M eP são pontos distintos.

Caso 1: Se M e P são o mesmo ponto, então aplicando o teorema2.1.9,pelo
ponto P passam exatamente três retas distintas, em particular passa uma.

Caso 2: Sendo M e P pontos distintos, de acordo com o teorema 2.1.3 existe
exatamente uma polar p do ponto P. Aplicando o axioma F6, as retas p e m têm
um ponto Q em comum (fig.2.5).

PMaa

Figura 2.5

Como o ponto Q pertence à polar dos pontos M e P, então pelo teorema
2.1.2os pontos M e P pertencem à polar de Ç.

Em ambos os casos existe uma reta que contém P e qualquer pólo de rn. tr

Lema2,'L.12. Dados dois pontos, existe uma reta que passa por ambos se e só se as suas
polares se intersetam.

Demonstração:

Sejam .B e S dois pontos distintos dados e suponhamos que existe uma reta
p incidente em ambos. Pelo teorema2.1..3, cada um dos pontos.R e,S tem exa-
tamente uma polar, r e s, respetivamente. As retas r e s são distintas, porque
pelo teorema2.7.4, cada polar tem um único pólo, e rB e S são pontos distintos
(hg-2.6).

O ponto 
^S 

não pertence a r porque .9 pertence a p e se ,S pertencesse a r, as
retas p e r teriam um ponto em comum, o que contradiria a definição de pólo

rn
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Figara2.6

e polar. Analogamente .R não pertence a s. De acordo com o axioma F6, existe

um ponto em comum entre r e s. Assim as polares r e s intersetam-se.

Para mostrar a afirmaçáo recíproca, suponhamos que rB e ,S são dois pontos

distintos dados e de acordo com os teoremas 2.7.3 e 2.1.4 existem as retas r e s

polares dos pontos R e S, respetivamente. Suponhamos, que as retas r e s se

intersetam num ponto T (h9.2.7).

SRaa

r

T

Figura2.7

De acordo com o teorema 2.1.3, existe uma única polar de 7. O ponto 7
pertence às polares de .R e 5 respetivamente, portanto pelo teorema 2.7.2, S

pertence à polar de ? e .B pertence à polar de ?. Existe assim uma reta polar de

7 à qual pertencem os pontos R e ,S. Ü

Lema 2.L.L3. Se r e q são duas retas que não intersetam a reta m, então r e q intersetam-

se no pólo de m.

Demonstração:

Consideremos r, qe m três retas distintas e suponhamos que r e q não in-
tersetam m. Sejam M op6lodem, rR opólo der e Q opólo de q tendoem
consideração o teorema 2.1.4. Suponhamos, com vista a um absurdo, que À
não pertence a m. Então, pelo axioma F5, m tem um ponto em comum com r/
o que é falso, pois por hipótese r e mnão têm pontos em comum. Fazendo um
raciocínio análogo ao que foi feito para o ponto -E concluímos que o ponto Q
pertence à reta rn. Assim R e Q pertencem a m. Segundo o teorema 2.L.2, o

ponto M pertence às polares de .R e Q, ou seja a r e q (fig. 2.8). Assim as retas

r e q intersetam-se no pólo de rn.. tr

Lema 2.1.'1.4. Por um ponto P passam exatamente três retas que não intersetam a polar

de P.
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2.1 Configuração de Desargues

a R

r q

Figura 2.8

Demonstração:

Dado um ponto P, pelo teorema 2.L.9, incidem neste exatamente três retas

distintas r, s et. De acordo com o teorema 2.1.3 o ponto P tem exatamente uma
polar p. Os pólos de r, s e ú, respetivamente R, S e 7, pertencem a p de acordo
com o teorema 2.'1..2e o teorema 2.1,.3 (h9,.2.9).

t
§

r

R TS p

Fig:ra2.9

Nem o ponto S nem o ponto 7 pertencem à reta r, pois caso contrário as

retas p e r teriam um ponto em comum, o que contradiria a definição de pólo e
polar. Analogamente o ponto S não pertence à reta ú, o ponto -R não pertence
nem à reta snem à reta ú e opontoZnãopertence à reta s. Assimpelo ponto
P passam exatamente três retas que não intersetam a reta p, polar de P. n

Teorema 2.1.15. Existem exatammte dez pontos e dez retas na configração de De-

sarSues.

Demonstração:

De acordo com o axioma F1, existe no mínimo um ponto P. Este Ponto tem
exatamente uma polar p, pelo teorema 2.1..3. De acordo com o axioma F5, â r€tâ
p tem exatamente três pontos R, T e S distintos. Aplicando o teorema 2.1.3,

podemos considerar as retas r, ü e s polares dos pontos R,T e S, respetivamente.

Segundo o teorema 2.1.2 o ponto P incide nas retas r, t e s. De acordo com o
axioma F5 cada reta tem exatamente três pontos. Seju* A, B, C, D, E e G
pontos, tais que A, B e P são os três pontos da reta r; C, D e P são os três

pontos da reta s; os pontos E, G e P são os três pontos da reta Í (ver fig. 2.10).

Definimos dez pontos. Suponhamos, com vista a um absurdo, que existem pelo
menos onze pontos. Seja ff um décimo primeiro ponto, distinto dos anteriores.
De acordo com o teorema 2.7.3 o ponto Í/ tem exatamente uma polar â. A reta
h. e por exemplo a rcta p têm um ponto em comum, aplicando o axioma F6.
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Sem perda de generalidade, suponhamos que o ponto R é comum às retas h e
p. Como rR pertence à reta h, o ponto .É/ pertence à reta r , pelo teorem a 2.7.2.
Mas o facto de ff ser distinto de todos os outros pontos e pertencer à reta r
contraria o axioma F5, pois a reta r tem quatro pontos em vez de ter três. Assim
esta configuração tem exatamente dez pontos. Provou-se a existência de dez
pontos. Por dualidade existem exatamente dez retas.

T

E

s
D

P t

B

Figura 2.10

Definição 2.1|1,6. Dizemos que os triângulos ABC e A1B1C1 se encontram em pers-

petioa central, se as retas AA1, BB1 e CCr se intersetam num ponto P. Ao ponto P
chamamos centro de perspetioa.

Definição 2.1.17. Consideremos dois triângulos ABC e A1B1C1. Suponhamos que

existem pontos R, S e T tais que R é o ponto de interseção das retas BC e B1Cy, S é
o ponto de interseção das retas AC e ArCt e T é o ponto de interseção das retas AB
e 4181. Dizemos que os triângulos ABC e A1B1C1 estão em perspetkta axial se os

pontos R, S e T são colineares. À reta que passa pelos pontos R, S e T chamamos eixo

de perspetiaa.

Teorema 2.1.18 (Teorema de Desargues). Se dois triângulos ABC e A1B1C1estão
emperspetioa central, então estão emperspetioa axial. (Assume-se que A, B, C, At, Bt,
C1 e P são todos distintos e não existem trêspontos A, B, C, At, Bt e Ct colineares).

Demonstração:

Consideremos dois triângulos ABC e AlBlCl tais que as retas AA1, BB1 e
CC1 se intersetem num ponto P. De acordo com o teorema 2.7.3, o ponto P tem
exatamente uma polar p. Designemos por r a reta AA1, por s a reta B B1e por ú

a reta CCr. As retas r, s e t tem exatamente um pólo,B, S e T, respetivamente,
segundo o teorema 2.7.4. Se P pertence a r, I e ú, pelo teorema 2.1,.2, os pontos
R, S e 7 pertencem à reta p. Sejam a, b, c, a1, b1 e.c1 as polares de Á, B, C, A1,
Bt, Ct, respetivamente. Como C pertence a t, pelo teorema 2.7.2, T incide em c.

Analogamente vemos que o ponto 7 pertence às retas c ê c1, o ponto ,9 pertence

48



2.1 ConÍiguração de Desargues

às retas b e \ e o ponto R pertence às retas o, e a1. Para definir a polar do ponto
Á não podemos considerar o ponto C, pois existe uma reta que passa pelos
pontos C e A. Se o ponto C pertencesse à polar de Á, então esta reta e a reta que
contém o ponto ,4 tinham um ponto em comurn, o que contradiria a definição
de pólo e polar. Pela mesma razão, a polar de á também não pode passar pelos
pontos B e A1. A polar de Á também não pode passar por S nem por 7, pois
pelo teorema2.1.9 por cada ponto passam exatamente três retas, neste caso por

^9 
passam as retas b, bt e p e por 7 passam as retas c, ct e p. Então a polar de Á

passa pelos pontos C1 e F1. De modo análogo chegamos à conclusão que:
- à polar de Á1 (o1) pertencem os pontos C, B e R;
- à polar de B (à) pertencem os pontos Ar, Cr e S;

- à polar de C (c) pertencem os pontos A1, Bl eT;
- à polar de Br (ôr) pertencem os pontos A, C e S;

- à polar de C1 (c1) pertencem os pontos A, B eT.

Para ilustrar todo o nosso raciocínio feito na demonstração, apresentamos
um possível modelo do Teorema de Desargues.

P

R

t
,9

c

B

Al

s

p
bt

Figura 2.11: Um possível modelo da configuração de Desargues

As retas o e a1 contêm lados correspondentes dos triângulos e intersetam-se

C

b
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em À. As retas à e fu contêm lados correspondentes dos triângulos e inter-
setam-se em ^9. As retas c e c1 contêm lados correspondentes dos triângulos
e intersetam-se em 7. Os pontos T, R e,S pertencem à reta p e como tal são

colineares. Conclui-se assim que os triângulos estão em perspetiva a partir de

uma reta.

Esta informação pode ser resumida na tabela 2.1.

p T ,9 t a b c A1 br Cl

P x x X

R X X X

^9
x X X

T X X X

A X X X

B X X X

C X x X

A1 X X X

B1 x X X

Ct X X X

Tabela 2.1: Tabela de incidência

n

O modelo ilustrado no teorema de Desargues poderá ser um exemplo re-

presentativo desta axiomática, pois facilmente se verifica que cumpre todos os

axiomas. Assim este sistema axiomático é consistente.

2.2 Configuração de Papo

Papo de Alexandria viveu nos séculos III e IV d.C., numa época de estagnação
da matemática grega. As suas contribuições para a matemática foram relati-
vamente pequenas, mas os seus extensos comentários sobre as realizações dos

matemáticos anteriores têm um valor inestimável. A sua obra mais importante
denomina-se por "Coleção Matemática" e é composta por oito livros (dos quais
estão perdidos o primeiro e parte do segundo). No livro VII é demonstrado o
resultado hoje conhecido como Teorema de Papo [ESQSC89].

Nesta secção iremos introduzir a axiomática da configuração de Papo. À se-

melhança dos sistemas axiomáticos anteriores começaremos por introduzir os

axiomas em que se baseia esta configuração. Tal como na configuração anterior
terminaremos com o teorema que dá o nome a esta configuração: Teorema de
Papo.
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2.2 ConÍiguração de Papo

Consideremos os axiomas que se seguem para a configuração de Papo.

Axiomas:

Axioma G1: No mínimo, existe uma reta.

Axioma G2: Existem exatamente três pontos distintos em cada reta.

Axioma G3: Nem todos os pontos estão sobre uma reta.

Axioma G+: Por dois pontos distintos passa no máximo uma reta.

Axioma Gs: Se P é um ponto que não está sobre a reta m, existe exatamente
uma reta que passa por P paralela a m .

Axioma G6: Se rn é uma reta que não está sobre o ponto P, então existe exata-
mente um ponto sobre m não colinear com P.

A Configuração de Papo é um sistema axiomático que satisfaz o princípio da
dualidade. Tal como fizemos na secção anterior vamos enunciar os duais dos
axiomas anteriores e verificar que correspondem a teoremas nesta geometria.
Não introduziremos os duais dos axiomas Cs e Go, pois estes são duais um do
outro.

Teorema 2.2.1 (Dual do axioma Gr). No mínimo, existe um ponto.

Demonstração:

De acordo com o axioma C1, existe, no mínimo, uma reta e em cada reta
existem exatamente três pontos, de acordo com o axioma G2. Logo, existe um
ponto, no mínimo. !

Teorema 2.2.2 (Dual do axioma G). Existem exatamente três retas distintas sobre

cada ponto.

Demonstração:

Seia P um ponto qualquer. Aplicando o axioma G1, existe, no mínimo, uma
reta r. Podemos considerar dois casos distintos:

1. P está sobre a reta r

2. P não está sobre a reta r

Caso 1: Se o ponto P está sobre a retar, então segundo o axioma G3, existe
um ponto S que não está sobre a reta r. Aplicando o axioma Gs ao ponto S e
à reta r, existe exatamente uma reta .s que passa pelo ponto ,S paralela à reta
r. De acordo com o axioma G2, a reta s tem exatamente três pontos distintos,
um deles é o ponto ^9, aos outros dois podemos chamar Q e R.Como a reta s

não incide no ponto P, existe exatamente um ponto sobre s não colinear com o
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ponto P, segundo o axioma G6. Como os pontos S, Q e -B estão em igualdade
de circunstâncias, sem perda de generalidade, consideremos que o ponto Q não
é colinear com P. Logo, como consequência do axioma G6 e aplicando o Ga,

construímos as retas PR e PS. Assim, no ponto P incidem as retas r, PRe PS
(hs.2.12).

R

Figura2.12

Vamos provar que não existem mais retas incidentes em P. Suponhamos,
com vista a um absurdo, que existe uma quarta reta t, distinta das anteriores,
que incide no ponto P. A reta ú e a reta s têm um ponto em comum, caso con-
trário obteríamos uma contradição com o axioma G5, pois já existe a reta r, que
incide no ponto P e é paralela à reta s. A reta ú não pode incidir no ponto Q,
pois o ponto P não é colinear com o ponto Q e como a reta s só tem três pontos,
a reta t vai ter de incidir ou no ponto Â ou no ponto ,S. Assim a reta t teria de
coincidir com a reta PR ou com a reta PS o que é impossível, pois supusemos
que a reta ú é distinta das retas anteriormente definidas.

Caso 2: se o ponto P não está sobre a Íeta r , aplicando o axioma Gs, existe
exatamente uma reta I sobre o ponto P paralela a r. De acordo com o axioma
C2, â r€ta r tem exatamente três pontos T, U e M distintos. Como o ponto P
não está sobre a reta r, então pelo axioma G6 existe exatamente um ponto sobre
a reta r não colinear com o ponto P. Sem perda de generalidade suponhamos
que o ponto M não é colinear com o ponto P. Assim, existe uma reta que passa
pelos pontos P e 7 e uma reta que passa pelos pontos P e U, de acordo com o
axioma G4, estas retas são únicas e vamos designá-las por PT e P[/. No ponto
P incidem as três retas ú, PT e PU. De forma análoga ao caso anterior se prova
que não existe uma quarta reta que incide no ponto P.

Concluímos que em cada ponto incidem exatamente três retas. tr

Teorema 2.2.3 (Dual do axioma G). Nem todas as retas estão sobre o mesmo ponto.

Demonstração:

Aplicando o axioma Gr, existe no mínimo uma reta r. De acordo com o
axioma Gs existe um ponto P que não está sobre r. Portanto pelo axioma G5,

existe exatamente uma reta m sobre o ponto P paralela a r (fig.2.73).
Como a reta r e a reta mnão se intersetam, existem duas retas distintas que

não incidem no mesmo ponto. n

Teorema 2.2.4 (Da;al do axioma Ca). Duas retas distintas estão no máximo sobre

um ponto.

r

s
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2.2 Configuração de Papo

r

m
P

Figura 2.13

Demonstração:

Dadas duas retas distintas r e s, segundo o axioma Gs, existem exatamente
três pontos distintos em cada uma delas. Suponhamos com vista a um absurdo
que dois desses pontos, Q eT, são comuns às duas retas (fig. 2.14).

T

Figara2.74

Como os pontos Q e 7 estão sobre as retas r e s, então aplicando o axioma
C4, âs retas r e s sãoa mesma, o quecontradiria anossa hipótese. Portanto r e

s estão no máximo sobre um ponto. tr

Verificámos que este sistema satisfaz o princípio de dualidade.

Lema 2.2.5. Cada reta admite exatamente duas retas paralelas.

Demonstração:

S$am uma reta dada. Segundo o axioma Gy,nàretamexistemexatamente
três pontos R, S e 7 distintos. De acordo com o axioma G3, existe um ponto
P que não está sobre a Íeta rn. Aplicando o axioma G5, existe exatamente uma
reta n sobre P paralela a m. Como m é uma reta que não passa pelo ponto P,
então existe exatamente um ponto sobre rn não colinear com o ponto P, pelo
axioma Ge . Sem perda de generalidade podemos supor que o ponto .B não é

colinear com o ponto P. Assim, existe uma reta que passa pelos pontos P e S

e uma reta que passa pelos pontos P e T. De acordo com o axioma G+, estas
retas são únicas e vamos designáJas por P^9 e PT. De acordo com o axioma
G2, a reta P,S tem exatamente três pontos, os pontos S e P e um terceiro ponto

Q. O ponto Q não pertence àreta m, pois caso contrário as retas PS e m seriam
a mesma. Analogamente o ponto Q não pertence à reta n. Aplicando o axioma
G5, existe exatamente uma reta I incidente no ponto Q e paralela à reta m (fig.
2.75).

Verificámos a existência de duas retas paralelas a m. Suponhamos, com vista
a um absurdo, que existem pelo menos três retas paralelas a rn. Seja s uma
terceira reta paralela a rn distinta de I e n. A reta s não pode incidir em nenhum
dos pontos R, S eT,por hipótese, assim a reta s é distinta das retas PS e PT.
No ponto P incidem as retas n, P S e PT ,logo de acordo com o teorema 2.2.2 a

.9

r
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Figura 2.15

reta s não pode incidir em P. Verificamos facilmente que a reta s não incide no
ponto Q, pois caso incidisse existiam duas retas, I e s paralelas à reta m, o que
contraria o axioma Gs. A reta s não incide em nenhum dos outros dois pontos
de cada uma das retas I e n, por raciocínio análogo ao que foi feito para o ponto

Q. Consideremos, de acordo com o axioma Gz, três pontos K,W e Z nareta s
(frg.2.16).

7n

n,

R

n

T

KWZ

P

i______.________

Figara2.16

Aplicando o axioma C6 ao ponto P e à reta s, existe exatamente um ponto
na reta s não colinear com o ponto P. Sem perda de generalidade, suponhamos
1{ o ponto não colinear com P. Assim existe uma reta incidente nos pontos P
e W' e outra nos pontos P e Z. De acordo com o teorema 2.2.2 sabemos que no
ponto P apenas incidem as retas n, PS, PT e portanto os pontos W e Z têm de

incidir nalguma destas retas. |á vimos que a reta s não interseta nem a reta n
nem a reta P S, assim ambos os pontos W e Z têm de incidir na reta PT, o que é

um absurdo pois cada reta só tem três pontos. Portanto só podem existir duas
retas paralelas a rru. tr

No capífulo L demonstramos o teorema de Papo na geometria dos nove pon-
tos e doze retas, vamos aqui enunciar e demonstrar este teorema no âmbito
desta axiomática. Adotaremos a definição 1.4.5 de polígono e a definição 1.4.6

de lados opostos dadas.

Teorema 2.2.6 (Têorema de Papo). Sejam m e n duas retas paralelas com pontos

distintos R, S, T sobre m e [J, P, Q sobre n, tais que R e U não são colineares, S e
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2.2 ConÍiguração de Papo

P não são colineares e Q e T não são colineares. Então podemos construir o hexágono

RPTU SQ. Além disso os seus lados opostos intersetam-se e os três pontos de interseção

são colineares.

Demonstração:

Tomemos duas retas paralelas rn e n com pontos distintos R, S e T sobre m
e Q, P e U sobre n, tais que ,B e [/ não são colineares, ,S e P não são colineares
e T e Q não são colineares e as retas PR, QR, QS, SU, PT e TU. Estas retas

são os lados do hexágono RPTUSQ. De acordo com a definição 1.4.6, o lado
opostoao lado PRé SU,olado oposto ao lado PT é QS e o lado opostoao lado
TU é 8R.

De acordo com o axioma Gz, existem exatamente três pontos distintos na
reta PR. Seja I{ um ponto sobre a reta PR, distinto de .R e P (fig,.2.77).

m

a

Figwa2.\7

O ponto Q é colinear com o ponto À e com o ponto P, assim não pode ser

colinear com o ponto K, pelo axioma G6, aplicado ao ponto Q e à reta RP.
Como K não é colinear com Q, em particular, K não está sobre a reta SQ. O
ponto R não está sobre a reta ^9Q porque caso contrário pelo axioma G4, a reta
m e areta,SQ seriam a mesma. Analogamente, o ponto P não está sobre a reta

SQ. Assim a reta ,SQ é paralela à reta P.R. Pelo axioma G5, existe exatamente
uma reta paralela à reta P.R que passa pelo ponto S. Como a reta SQ está nestas
condições, as retas SU e PR têm um ponto em comum. Como nem o ponto iB

nem o ponto P estão sobre S[/ o ponto K tem de estar sobre ^9[/.
Segundo o axioma Gz, existem exatamente três pontos distintos nareta RQ,

pelo que podemos considerar um ponto W sobre a rcta RQ, distinto de R e Q
(fig.2.18).

Por uma argumentação análoga à anterior podemos demonstrar que o ponto
W pertence àrctaTU.

Novamente de acordo com o axioma G2, existem exatamente três pontos
distintos na reta SQ, seja Z um ponto sobre a reta SQ, distinto de ,S e Q $ig.
2.7e).

Por razões análogas às anteriores o ponto Z pertence à reta T P.

n
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Figura 2.18
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Figura 2.19

De acordo com o axioma G5, como K é um ponto que não está sobre a reta
rn, existe exatamente uma reta I sobre K paralela a m. O ponto 7( não é colinear
com oponto Q, mas K tem de ser colinearcom dois pontos de RQ que sópodem
ser os pontos rB ou trY; e colinear com dois pontos de S8 que só podem ser os

pontos S ou Z. Assim o ponto 1( é colinear com o ponto trV e com o ponto Z.
De acordo com o teorema 2.2.2, pelo ponto 1{ só passam três retas RP , SU e l.
Como as retas RP e SU têm três pontos cada uma, respeitando assim o axioma
G2, os pontos W e Z não podem pertencer a estas retas e portanto incidem
ambos na reta l. Logo os pontos K , W e Z são colineares (fig. 2.20).

tr

m,
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2.2 ConÍiguração de Papo

m R

K

n a

Figura2.20

Reparemos que a demonstração do teorema é diferente da que foi feita no
capítulo anterior, o que é natural uma vez que o sistema axiomático é diferente.

Teorema 2.2.7. Existem exatamente nooe pontos e noae retas na configuração de Papo.

Dernonstração:

Segundo o axioma G1 existe, no mínimo, uma reta m. De acordo com o

axioma G2 existem exatamente três pontos R, S,T distintos na reÍam. Segundo
o axioma Ga, existe um ponto P que não pertence à reta rn. Aplicando o axioma
G5, existe exatamente uma reta n incidente no ponto P paralela à reta m (fig.
2.21).

Figura2.21,

De acordo com o axioma G2, nà reta n existem exatamente três pontos, um
deles é o ponto P, aos outros dois podemos-lhes chamar U, Q. Corno areta m
não passa pelo ponto [/, aplicando o axioma G6 existe exatamente um ponto
sobre rn não colinear com o ponto [/. Sem perda de generalidade, podemos
escolher E como o ponto que está sobre m e que não é colinear com o ponto [/.
Sendo assim, existe uma reta incidente nos pontos U eT e uma reta incidente
nos pontos S e U, de acordo com o axioma Ga, estas retas são únicas e vamos
designá-las por SU eTU (h9.2.22).

Como À não é colinear com o ponto [/, aplicando o axioma G4, podemos
construir as retas PRe RQ. Aplicando o axioma Ge, existe um ponto em m não
colinear com o ponto P, esse ponto só pode ser o ponto S ou o ponto 7 (pois
anteriormente definiu-se areta PR), sem perda de generalidade podemos su-
por que é o ponto S. Assim pelo axioma Ga define-se a reta PT. Finalmente

s

P
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Figura2.22

aplicando o axioma G6 ao ponto Q e à reta rn, o ponto Q tem de ser colinear
com ,S ou com o ponto 7. Não pode ser com o ponto 1| porque ao aplicarmos o
axioma G6 a este ponto e à reta n teríamos uma contradição, portanto o ponto Q
tem de ser colinear com S. Reparemos que temos duas retas rn e n e seis pontos
nas condições do teorema de Papo, portanto podemos aplicar este teorema que
garante a existência de um hexágono em que os lados opostos se intersetam e
os trôs pontos de interseção estão sobrc a mcsma reta. Verificamos a existên-
cia de nove pontos e nove retas. Comecemos por demonstrar que não existem
mais pontos. Suponhamos, com vista a um absurdo, que existem pelo menos
dez pontos. Seia V um décimo ponto. Aplicando o axioma Ga, pelos pontos I/
e r? passa uma reta -rRV. Assim no ponto .R incindem as retas RV, RQ, RP em;
o que contraria o teoremaT 2.2.2. Portanto csta configuração tem exatamente
nove pontos. Seguidamente demonstraremos que não existem mais retas. Su-
ponhamos, com vista a um absurdo, que existem pelo menos dez retas. Seja 

1'

uma décima reta diferente de todas as retas definidas anteriormente. De acordo
com o lerna 2.2.5, a reta j não pode ser paralela à reta m pois foram definidas
as retas I e n como retas paralelas a m. Assim as retas j e m têm um ponto em
comum, que só pode ser um dos pontos Â, ,S ou 7. Nestes pontos já incidem
três retas, logo a reta j não pode incidir em nenhum deles, de acordo com o
teorema T 2.2.2. Portanto esta configuração tem exatamente nove retas. tr

rL
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Capítulo 3

Planos e Espaços Projetivos
Finitos

3.L Planos Projetivos Finitos

Os planos projetivos apresentam uma grande diferença em relação à geometria
Euclidiana. Essa diferença deve-se ao facto de no plano projetivo finito não
existirem retas paralelas, isto é, quaisquer duas retas intersetam-se num ponto.
Iremos ao longo desta secção enunciar e demonstrar vários resultados que nos

ajudam a compreender esta geometria. Finalizaremos com uma breve discussão
sobre a existência de planos projetivos.

Este sistema axiomático é uma generalização do sistema axiomático da ge-

ometria dos sete pontos. Embora os axiomas deste sistema e do sistema axio-
mático da geometria dos sete pontos sejam distintos, o modelo de ordem dois
encontrado é exatamente o mesmo. O plano projetivo de ordem dois também
é conhecido por plano de Fano.

Seja n > 1 um natural. Um conjunto de pontos que satisfaça o seguinte
sistema de axiomas chama-se plano projetivo de ordem n.

Axiomas:

Axioma H1: Existem pelo menos quatro pontos não colineares três a três.

Axioma H2: Existe pelo menos uma reta incidente com exatamente n+1 pontos
distintos.

Axioma H3: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma Ha: Dadas duas retas distintas, existe pelo menos um ponto incidente
com ambas.
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Modelos que demostram a independência dos axiomas

Para cada axioma iremos dar um exemplo que demonstra a sua indepen-
dência e facilmente se verifica que se cumprem todos os axiomas com exceção
do axioma em questão. Nos exemplos, que daremos para os axiomas H1 e H3,
o axioma Ha é cumprido trivialmente porque não existem duas retas.

Axioma H1: Existem pelo menos quatro pontos não colineares três a três.

Exemplo: O modelo formado por uma reta com n + 1 pontos contraria o
axioma H1, pois todos os pontos são colineares (fig. 3.1).

P1 Pz I)t n+\

Figura 3.1

Axioma H2: Existe pelo menos uma reta incidente com exatamente n + 1

pontos distintos.

Exemplo:

o Se n = 2, o plano projetivo de ordem três, descrito mais à frente no exem-
plo 3.1.13, não cumpre a axiomática deste plano projetivo, pois todas as

retas têm quatro pontos e não três.

o Se n > 2, o plano projetivo de ordem dois, descrito mais à frente no exem-
p(o3.7.72, cumpre todos os axiomas menos este, uma vez que que todas
as retas têm três pontos e não n + 1.

Axioma H3: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Exemplo: Modelo constituído pelos pontos A e D e por uma reta incidente
nos pontos Et, Ez, . . ., En+1 $g.3.2).

A. En+'t

D.

Figura 3.2

Este modelo não cumpre o axioma H3, pois existem dois pontos distintos
nos quais não incide nenhuma reta.

Axioma Ha: Dadas duas retas distintas, existe pelo menos um ponto inci-
dente com ambas.
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3.1. Planos Projetivos Finitos

Exemplo: Consideremos os pontos A, B, C1, Cz, . . . , Cn+L . Sejam r uma reta
incidentenospontos Ae B e sumareta incidentenospontos Ct,Cz,...,Cn+.1 .

Consideremos ainda, as retas incidentes no ponto Á e em cada um dos pontos
da reta s e as retas incidentes no ponto B e em cada um dos pontos da reta s,

como ilustra a figura 3.3.

B

C

r

.9

Figura 3.3

Este modelo contraria o axioma Ha, pois as retas r e s não têm um ponto em
comum.

À semelhança do que foi dito no capítulo um, na definição 1.1.5 da Geome-
tria dos 4 pontos, o dual dos axiomas deste sistema axiomático é obtido tro-
cando os termos ponto e reta. Faremos, seguidamente, o dual de cada um dos
axiomas e a sua respetiva demonstração, provando assim que este sistema axi-
omático satisfaz o princípio da dualidade.

Teorema 3.1.1 (Dual do axioma H). Existem pelo menos quatro retas não concor-
rentes três a três.

Demonstração:

Pelo axioma H1, existem quatro pontos P, R, S e 7 não colineares três a três.
Aplicando o axioma H3, construímos as retas PS, RT, ST e PR (fig.3.a).

s

Figura 3.4

Suponhamos, com vista a um absurdo, que três destas retas são concorren-
tes. Sem perda de generalidade, suponhamos que PS, RT e ST incidem num
ponto Q. Podemos considerar dois casos:

1. o ponto Q é distinto dos pontos já definidos;

2. o ponto Q é um dos pontos já definidos.
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Caso 1: se o ponto Q é distinto dos pontos P, R, S e 7, então os pontos 7 e
Ç incidem simultaneamente nas retas lBT e Sf (fi9. 3.5).

Figura 3.5

De acordo com o axioma FI3, as retas rBT e ^97 são a mesma, logo os pontos
R, S e 7 são colineares, o que contradiz a nossa hipótese.

Caso 2: suponhamos que os pontos Q e S são o mesmo. Nesse caso a reta
.RT passa pelo ponto ,S, logo os pontos R, S eT são colineares, o que contradiz a
nossa hipótese. Analogamente podemos ver que o ponto Q não pode coincidir
com os pontos P, ReT.

Portanto existem pelo menos quatro retas não concorrentes três a três. I

Teorema 3.1.2 (Dual do axioma H2). Existe pelo menos um ponto incidente com

exatamente n + 7 retas distintas.

Demonstração:

Pelo axioma H2, existe pelo menos uma reta r com n + 1 pontos distintos
At, A2, A3, ..., An*1. De acordo com o axioma H1, existe um ponto P que não
incide na reta r. Aplicando o axioma H3 construímos as retas 11, 12, ...t rn+7

incidentes, respetivamente, nospontos Ái e P, A2e P, . . ., An+1e P (ver fig. 3.6).

Verifiquemos em primeiro lugar que existem n+1 retas distintas. Suponhamos,
com vista a um absurdo, que as retas ri p ri são a mesma, com i / j. Entáo
ambos os pontos Ai e Ai são pontos distintos e são incidentes na reta r;, logo
de acordo com o axioma FI3, âs retas r, e r são a mesma. No entanto o ponto P
incide na retari, mas não incide na reta r e chegamos a uma contradição. Assim
as retas ri ê ri são distintas. Verifiquemos agora que não existe mais nenhuma
reta incidente no ponto P. Suponhamos, com vista a um absurdo, que existe
uma reta s, distinta das retas ,1, ..., 12,1, grte incide no ponto P. De acordo
com o axioma FIa, as retas r e s incidem num ponto em ,S. Como a reta r tem
exatamente n + 1 pontos, o ponto S tem de ser um dos pontos At, Az, 43, ...,

s
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3.1 Planos Projetivos Finitos

An*1. Seia i € 1-, . . ., n + l tal que S = A;. Então Áz incide na reta s, aplicando o
axioma H3 aos pontos P e Ai vemos que as retas ri e § são a mesma.

Concluímos então que P incide em exatamente r, + 1 retas (fig. 3.6).

r"l Tn+L

Figura 3.6

Teorema 3.L.3 (Dual do axioma H). Dadas duas retas distintas, existe exatamente

um ponto incidente em ambas.

Demonstração:

Sejam r e s duas retas distintas. De acordo com o axioma H4, existe um
ponto P incidente em ambas as retas (fi9.3.7).

r P

s

Figura 3.7

Suponhamos, com vista a um absurdo, que as retas r e s incidem em dois
pontos P e Q distintos (fig. 3.8).

P

Figura 3.8

Se P e Q são pontos distintos, pelo axioma H3, as retas r e s são a mesma.
Isto é absurdo porque as retas r e s são distintas, por hipótese.

Portanto duas retas distintas incidem exatamente num ponto. !

Teorema 3.1.4 (Dual do axioma Hl. Dados doispontos distintos, existe pelo menos

uma reta incidente em ambos.

r

s
r
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Demonstração:

Sejam P e Â dois pontos distintos dados. De acordo com o axioma H3, existe
exatamente uma reta incidente em ambos os pontos P e R- Logo verifica-se o
teorema. n

Teorema 3.1.5. Dados dois pontos P e Q, existe uma reta que não incide nem com P
nem com Q.

Demonstração:

Sejam P e Q pontos distintos. Segundo o teorema 3.1.1, existem quatro retas
distintas, não concorrentes três a três. Se uma das retas não incide com o ponto
P nem com o ponto Q, já temos uma reta não incidente com nenhum destes
pontos. Caso contrário, como não pode haver três retas incidentes com um dos
pontos P ou Q, teremos duas retas rz e 14 incidentes em P e outras duas retas
11 e 13 incidentes em I. Aplicando o axioma H4, existe um ponto .B incidente
êrrr 13 € 14 € üÍr ponto S incidente êm 11 € 12 $ig.3.9). Segundo o axioma FI3,

Figura 3.9

existe uma reta rn incidente em -R e em ^9. Suponhamos que o ponto P incide
na reta rn (h9.3.10). Tcmos que os pontos -B e P incidem nas retas 14 e m,logo

Figura 3.10

as retas 14 ê m são coincidentes; por outro lado temos que se os pontos S e P
incidem nas retas 12 e m,logo 12 e m são coincidentes, de acordo com o axioma
H3. Assim as retas 14 e rz são coincidentes. Logo P não incide na reta m. Por
processo análogo se prova que I não pertence a m.

P
r3

P
r3

rn
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3.1 Planos Proietivos Finitos

Provamos que existe uma reta que não incide nem com P nem com Q. !

Como este sistema axiomático satisfaz o princípio da dualidade então tam-
bém é válido o dual do teorema 3.1.5, que vamos enunciar seguidamente sem
fazer a demonstração.

Teorema 3.L.6 (Dual do teorema 3.1..5). Dadas duas retas r e s, existe umponto que

não incide nem em r nem em s.

Teorema 3.1.7. 1. Se P e Q são dois pontos distintos, então existe uma bijeção

entre o conjunto das retas que passam pelo ponto P e o conjunto das retas que

passam pelo ponto Q.

2. Se r e s são duas retas distintas, então existe uma bijeção entre os conjuntos dos

pontos das retas r e s.

Demonstração:

1: Se P e Q são dois pontos distintos, existe uma reta r não incidente nem
no ponto P nem no ponto Q de acordo com o teorema 3.1.5 (fig. 3.11).

Seja ú uma reta incidente no ponto P. Pelo teorema 3.1.3 existe um único
ponto À comum às retas r e ú. Assim sendo definimos a função / que a cada
reta ú incidente no ponto P Íaz corresponder a respetiva reta RQ $g.3.1,2).

R

r

Figura 3.12

/ : {retas incidentes no ponto P) 
- {retas incidentes no ponto Q}

t ---+ RQ

P
a

aa
r

Figura 3.11

t
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Provemos a injetividade. Sejam t1 e t2 duas retas distintas que passam pelo
ponto P. Então os pontos R1 e R2 também são distintos, caso contrário pelo axi-
oma H3 as retas ú1 e ú2 seriam a mesma. Assim as retas R:,Q e RzQ são distintas
(fig.3.13).

tz

r

Figura 3.13

Provemos a sobrejetividade. Seja q uma reta arbitrária que incide no ponto

Q. Esta reta interseta a reta r num ponto À, de acordo com o teorema 3.1.3. De
acordo com o axioma FI3, Ílos pontos R e P incide exatamente uma reta ,BP.
Assim a reta q é a imagem da reta RP pela função /. A função é sobrel'etiva.

ConcluÍmos que existe uma bijeção entre as retas que passam pelos pontos
PeQ.

2: Se r e s são duas retas distintas, então existe uma bijeção entre os pontos
das retas r e s. Se dados P e Q dois pontos distintos, então existe uma bijeção

entre as retas que passam pelos pontos P eQ, como este sistema axiomático
é dual, logo dadas r e s duas retas distintas, então existe uma bijeção entre os

pontos de ambas as retas. tr

Teorema 3.1.8. Dada uma reta r e um ponto P, existe umq bijeção entre os pontos da

reta r e as retas que incidem no ponto P.

Demonstração:

Sejam dados uma reta r e um ponto P. Podemos considerar dois casos:

1. o ponto P não incide na reta r;

2. o ponto P incide na reta r.

Caso 1: definamos a função g,qltJe a cada ponto Q da reta r faz corresponder
areta PQ.

9 : {pontos da reta r} ----+ {retas que incidem no ponto P}

Q ----+ PQ
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3.1 Planos Projetivos Finitos

Provemos a injetividade. Se Qr e Q2 sáo dois pontos distintos dados, então
as retas PQt e PQ2 são distintas pelo axioma H3.

Provemos a sobrejetividade: seja s uma reta arbitrária que incide no ponto
P. Esta reta interseta a reta r num ponto 7, de acordo com o teorema 3.1.3, logo
a imagem do ponto 7 pela função g é areta s. Portanto a função é sobrejetiva.

Caso 2: o ponto P incide na reta r. Pelo teorema 3.1.1 existe uma reta s que
não incide no ponto P. Pelo ponto dois do teorema 3.1.7 existe uma bijeção h

entre os pontos da reta r e os pontos da reta s. Seja j a função que a cada ponto

Q da reta r faz corresponder a reta h (Q) P (hg.3ru).

Figura 3.14

j : {pontos da reta rl ---+ {retas que incidem no ponto P}

Q ----+ h(8)P

Provemos a injetividade da função j. Dados os pontos Qt e Qz distintos
então os pontos h(Qt) e h(Q2) tarnbém são distintos porque a função h é uma
bijeção. Portanto as retas h(Qi P e h(Qz) P são distintas pelo axioma H3.

Provemos a sobrejetividade da função j. Seja ú uma reta arbitrária que incide
no ponto P. A reta ú interseta a reta s num ponto ,S, de acordo com o teorema
3.1.3. Como à é uma bijeção existe um ponto Q na reta r tal que h(Q) é o ponto
,S. Assim a imagem do ponto Q é areta ú. Logo a função é sobrejetiva.

Concluímos assim que existe uma bijeção entre os pontos da reta r e as retas
que incidem no ponto P. D

Teorema 3.7.9. Num plano projetiao de ordem n, cada reta incide em exatamente n+l
pontos.

Demonstração:

Seja r uma reta dada. Pelo axioma H2, existe pelo menos uma reta s inci-
dente em exatamente n + 1 pontos. Podemos ter dois casos:

1. as retas r e s são a mesma;

2. as retas r e s são distintas.

r
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Caso 1: se as retas r e s são a mesma, então a reta r incide em exatamente
n + 1 pontos.

Caso 2: se as retas r e s são distintas, então aplicando o ponto dois do te-
orema 3.1.2 existe uma bijeção entre os pontos das retas r e s. Assim a reta r
também tem exatamente n + 1 pontos. tr

Teorema 3.1.10. Num plano projetiao de ordem n, cada ponto é incidente em n + 1
retas.

Demonstração:

Como este sistema axiomático é dual, se cada reta é incidente com n + 1

pontos, então cada ponto incide também em exatamente n + 1 retas. tr

Teorema 3.L.LL. LIm plano projetioo de ordem n, tem exatamente n2 + n + 7 pontos

en2+n+7retas.

Demonstração:

De acordo com o axioma H2, existe pelo menos uma reta r com exatamente
n + 1 pontos, P1, P2, ..., Pn+t. Segundo o axioma H1, sabemos que existe
um ponto P do plano não incidente na reta r. Aplicando teorema 3.1.10, o
ponto P incide em exatamente n + L retas, rt, rzr ...r Tn+t. Tendo em aten-

ção o teorema 3.7.9, cada uma destas retas incide em exatamente n + 1 pontos
(o ponto P e n outros pontos) . Concluímos que, no mínimo, o número de pon-
tos é:

(n+7)n+1=nz +n+1.

Vejamos que não existem mais pontos. De acordo com o axioma H3, qualquer
ponto distinto de P tem de ser incidente numa das retas r1.,12,. . .,rn+1e assim
é um dos pontos considerados acima.

Como este sistema axiomático satisfaz o princípio da dualidade, então exis-
temnz+rr+1retas. tr

Vamos apresentar a seguir dois modelos para esta axiomática, um do plano
projetivo de ordem dois, outro de ordem três. Em ambos os exemplos, fazemos
uma pequena descrição da sua construção, a partir dos axiomas.

Exemplo 3.1.12. Um possível modelo para o plano projetivo de ordem dois.

Existem quatro pontos A, B, C e D não colineares três a três, de acordo com
o axioma H1. Aplicando o axioma FI3, construímos as Íetas AB , AC , AD, BC ,
BD e CD. Sendo um plano de ordem dois, pelo teorema 3.7.9, cada reta tem
exatamente três pontos e de acordo com o teorema 3.7.'1.'1,, existem exatamente
sete pontos e sete retas. Como existem sete pontos falta-nos definir três pontos,
sejam .8, F e G esses pontos. As retas definidas anteriormente só têm dois
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pontos, então, sem perda de generalidade, suponhamos que o ponto E incide na

reta AC, o ponto f- na reta CD e o ponto G na reta ÁD. Têmos assim definidas
as retas ADG, ABF e ACE com três pontos. As retas AB, BC e BD ainda
só têm dois pontos e o terceiro ponto terá de ser um dos pontos fá definidos.
Aplicando o axioma H3, a reta BC incide no ponto G, pois é o único ponto
dos definidos que não é colinear nem com o ponto B nem com o ponto C, caso

contrário contradizíamos o axioma Hg. A reta BD incide no ponto .E e a reta
áB incide no ponto F por razáo análoga à anterior. Falta-nos definir uma reta,

aplicando o axioma H3 construímos a reta EF, o outro ponto desta reta só pode
ser o ponto G, pois é o único ponto dos definidos que não é colinear nem com
o ponto.E nem com o ponto,F. As sete retas são: ABF, ACE, ADG, BCG,
BDE,CDF e EFG (h9.3.75).

C
F

Figura 3.15: Um possível modelo para o plano projetivo de ordem dois

A construção deste modelo verifica todos os axiomas.

Observemos que, se no modelo anterior, que construímos para o plano pro-
jetivo de ordem dois, retirarmos uma reta e os seus pontos/ vamos obter um
modelo que satisfaz o sistema axiomático da geometria dos quatro pontos. No
próximo capítulo, planos afins finitos, estudaremos mais detalhadamente este

fenómeno.

Salientamos ainda o facto deste modelo ser equivalente ao modelo apresen-
tado na geometria finita dos sete pontos. Isto não é mera casualidade. Todos

os axiomas do plano projetivo de ordem dois podem ser deduzidos como teo-
remas a partir dos resultados da geometria dos sete pontos. Da mesma forma
todos os axiomas da geometria finita dos sete pontos podem ser obtidos como
teoremas a partir dos resultados do plano projetivo de ordem dois. Para melhor
compreendermos o que acabamos de afirmar, vamos a título de exemplo, esco-

lher um axioma de cada uma das geometrias e deduzi-lo a partir dos resultados

da outra geometria. Comecemos por exemplificar como deduzir o axioma Hi a

partir dos resultados da geometria finita dos sete pontos.

Axioma H1: Existem pelo menos quatro pontos não colineares três a três.

Dedução:

69



De acordo com o teorema 1.3.7, existem sete retas, sejam r e s duas delas.
Estas retas têm um único ponto P em comum, segundo o teorema 1.3.1. As
retas r e s têm três pontos cada uma, segundo os axiomas D5 e D7, um é o
ponto P, aos outros dois pontos da reta r chamamos rB e 7 e aos outros dois
pontos da reta s chamamos Q e .9. Para que três dos pontos Q, R, S e 7 fossem
colineares, seria necessário que o ponto R ou T incidisse na reta .s ou o ponto Q
ou ,S incidisse na reta r/ o que não acontece.

Verificamos a existência de quatro pontos não colineares três a três. n

Finalizaremos por exemplificar como deduzir o axioma D6, a partir dos re-
sultados do plano projetivo.

Axioma D5,: Nem todos os pontos pertencem à mesma reta.
Dedução:

De acordo com o teorema 3.1.5, dados dois pontos P e Q, existe uma reta que
não incide nem com P nem com Q. Portanto nem todos os pontos pertencem à

mesma reta.

n

Exemplo 3.1.13. Um possível modelo para o plano pro;'etivo de ordem três.

Existem quatro pontos A, C, E e tr não colineares três a três, pelo axioma
H1. Aplicando o axioma H3, construímos as retas AC, AE, AL, CE, CL e EL.
Como o plano é de ordem três, pelo teorema 3.1,.9, cada reta tem exatamente
quatro pontos. As retas AC, AE e Átr têm o ponto Á em comum, logo não po-
dem ter mais nenhum ponto em comum, pois isso contraria o teorema 3.1.3.
Então podemos considerar os pontos B e r, incidentes na reta AE, os pontos G
e fI incidentes na reta AC e os pontos K e M incidentes na reta AL. De acordo
com o teorema 3.1.3, as retas CE e AL têrr. um ponto em comum, sem perda
de generalidade, podemos supor que é o ponto M , as retas C L e AE têm um
ponto em comum, sem perda de generalidade, podemos supor que é o ponto
f'; e as retas EL e,4C têm um ponto em comum, sem perda de generalidade,
podemos supor que é o ponto G. Como estas retas também têm quatro pon-
tos podemos considerar que os pontos D, J e.I pertencem, respetivamente, às

retas CE, CL e EL. De acordo com o teorema 3.1.77, não podem haver mais
pontos neste modelo, pois já definimos os treze pontos. Como, de acordo com
o teorema 3.1.10, cada reta tem exatamente quatro pontos e pelo axioma H2,
em dois pontos distintos incide exatamente numa reta, então definimos assim,
com argumentos semelhantes àqueles que acabamos de usar, as restantes retas,
que são treze de acordo com o teorema 3.7.77, ADI J, BGJM, BDHL, BCIK,
DFGK, EHKJ e FHIM. Construímos assim o modelo ilustrado na figura
3.1.6
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3.1. Planos Projetivos Finitos

K F

Figura 3.16: Um possível modelo de um plano projetivo de ordem três

Esta informação pode ser resumida na tabela 3.1.

Tabela 3.1: Tabela de incidência

A construção do modelo desta forma verifica todos os axiomas.
Observemos um fenómeno semelhante ao que aconteceu no modelo apre-

sentado para o plano projetivo de ordem dois. Se no modelo anterior, que cons-
truímos para o plano projetivo de ordem três, retirarmos uma reta e os seus

pontos, vamos obter um modelo que satisfaz o sistema axiomático da geome-
tria dos nove pontos e doze retas. Por exemplo, e sem perda de generalidade,

H
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A X X X X

B X X X X

C X X X X

D X X x X

E X X X X

F X X X X

G X X X X

H X X X X

I X X X X

J X X X X

K X X X X

L X x X X

M X X X X
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se retiramos areta IFMN e consequentementeos pontos I, F, M e l/. Vamos
obter um outro modelo formado pelos pontos A, B, C, D, E, G, J, L e K e pelas
retas ABE, AKL, AGC, AJD, BGJ, BDL, CBK, CDE, CJL, DGK, EKJ e

EGL (fig.3.77).

A BE

K

C
J

Figura 3.17

Será que existem planos projetivos de todas as ordens?

Podemos ver através das construções anteriores que existem os planos pro-
jetivos de ordem dois e três. Para nos ajudar a obter resposta à questão anterior
teremos de recorrer aos teoremas seguintes. Estes teoremas não serão demons-
trados, pois a sua demonstração não faz parte do âmbito deste trabalho. O pri-
meiro é consequência da existência de corpos finitos de ordem q, onde e = pk,
para algum primo p. Uma descrição da construção destes planos projetivos
pode ser encontrada no capítulo II do livro [HP73].

Teorema 3.1..L4. Existe um plano projetiao de ordem q para cada potência de primo q.

O teorema seguinte, em sentido contrário, dá-nos valores de n para os quais
não existe um plano projetivo de ordem nlHP73, capítulo III, teorema 3.61.

Teorema 3.1.15 (Teorema de Bruck-Ryser). Seja n um número inteiro positiao. Se

n : 7 ou 2(mod4), e não é a soma de dois quadrados, então não existe plano projetbo
de ordem n.

Consideremos os planos projetivos de ordem menor ou igual a 25. Apli-
cando o teorema 3.1.-1.4, verificamos que existem os planos projetivos de ordem
2, 3, 4, 5, 7, 8, 9, 11-, 13, L6, 17, 19, 23 e 25. Em relação às restantes possíveis
ordens vamos ver se satisfazem o teorema 3.1.15 e chegamos à conclusão de
que não existem os planos projetivos de ordem 6, 14,21. e 22. Sobre os planos
projetivos de ordem \0, 12, 15,18,20 e 24 estes dois teoremas nada nos dizem.

i
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3.2 Quadrados latinos

3.2 Quadrados latinos

Na presente secção iremos mostrar uma conexão entre planos projetivos finitos
e quadrados latinos. Veremos a existência de uma equivalência entre planos
projetivos de uma dada ordem e a existência de um determinado conjunto de
quadrados latinos da mesma ordem, a que chamamos conjunto completo de
quadrados latinos ortogonais dois a dois. Para ilustrar esta equivalência fa-
remos detalhadamente a construção de um conjunto de quadrados latinos a
partir de um plano projetivo e vice-versa. Para compreendermos melhor esta
construção, vamos começar por definir quadrados latinos e quadrados latinos
ortogonais dois a dois, dando um exemplo após cada definição.

Definição 3.2.7. Um quadrado latino de ordem n é uma matriz n x n que satisfaz as

se guintes propr ie dades :

o todas as entradas são números inteiros entre 7 e n;

o em cada uma das linhns e das colunas não existem números repetidos.

Exemplo 3.2.2. Quadrado latino de ordem cinco.

Definição 3.2.3. Sejam S = lrrr] e f = ltnr) dois quadrados latinos de ordem n.
Dizemos que S e T são ortogonais se os pares ordenados (toi,t,i) para 7 < i, j í n,

forem todos distintos.

Exemplo 3.2.4. Quadrados latinos ortogonais dois a dois de ordem cinco.

Uma forma simples de visualizar a definição é colocar o segundo quadrado
ligeiramente sobreposto por cima do primeiro quadrado como podemos ver a
seguir.

't 234 5

23451

45123
51234

34512

12345
23451

45723
51234

34512 41,3 5 2

2413 5

35241

5241,3
13524

1,2 24 31 43 55

23 35 42 54 11

45 52 1.4 21, 33

51132532M

34 41, 53 15 22
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De seguida, enunciaremos um resultado que nos indica um majorante para
o número de quadrados latinos ortogonais dois a dois de ordem n > 3.

Teorema 3.2.5. Sejat > 1- um número natural e suponhamos que existe um conjunto
de t quadrados latinos ortogonais dois a dois de ordem n > 3. Então t { n * 1.

Demonstração:

Seja {s1, sz, . . . , s1} um conjunto de quadrados latinos ortogonais dois a dois,
dado. Suponhamos, sem perda de generalidade, que na primeira linha de cada
quadrado latino os elementos estão ordenados de1. an. Consideremos ainda, as

ú entradas que se encontram na posiçáo (2,1). Estas I entradas são distintas, caso
contrário contradiz a definição 3.2.3. Nenhuma destas entradas pode ser igual
a 1, de acordo com a definiçáo3.2.1, pois 1 é o elemento da posição (1,1). Então
para as ú entradas que se encontram na posição (2,7) só existem no máximo n - 1

possibilidades. Assimt <n-7. tr

Se no teorema 3.2.5 t = n - 1, então o conjunto {q,"2,...,st} diz-se um
conjunto completo de quadrados latinos ortogonais dois a dois.

Exemplo 3.2.6. Conjunto completo de quadrados latinos ortogonais dois a dois
de ordem cinco.

Apresentaremos seguidamente um resultado que estabelece uma relação
entre planos projetivos e quadrados latinos da mesma ordem.

Teorema 3.2.7. Seja n ) 3. Existe um plano projetiao de ordem n se e só se existir
um conjunto completo de n 7 quadrados latinos ortogonais dois a dois de ordem n.

Não vamos apresentar aqui a demonstração do teorema, porque sai do âm-
bito deste trabalho. A sua demonstração encontra-se no livro [Rys63] de Her-
bert John Ryser (capítulo 7, teorema 4.1 - ver também o teorema 1.3). Mas para
melhor compreender o teorema vamos apresentar a construção dum conjunto
completo de dois quadrados latinos ortogonais de ordem três a partir do plano

34 512

72345
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3.2 Quadrados latinos

projetivo de ordem três, que construímos na secção 3.1 deste capítulo. Posteri-
ormente faremos o inverso: partiremos de um conjunto completo de quadrados
latinos ortogonais de ordem três (diferente do anterior) e construímos um plano
projetivo de ordem três. Para fazer estas construções baseamo-nos na demons-
tração do teorema anterior e na demostração do teorema 1.3 que se encontra na
mesma secção e capítulo do livro do teorema anterior.

O plano projetivo de ordem três, do exemplo 3.1.13 secção 3.1 deste capítulo,
é constifuído pelos pontos: A, B, C, D, E, F, G, H, I, J, K, L e M epelas re-
tas: ABEF, ACGH, ADIJ, AKLM, BCIK, BDHL, BGJM,CDEM,CFJL,
DFGK, EGIL, EHJK, FHIM. Das retas anteriores escolhemos uma qual-
quet por exemplo areta ABEI-, a que chamaremos r. Sabemos que por cada
um dos pontos da reta r passam quatro retas distintas, a própria reta e outras
três. Numeremos cada uma dessas três retas de 1 a 3, de forma arbitrária. Por

exemplo, todas as retas que incidem no ponto Á e distintas da reta r poderão
ser numeradas da seguinte forma: ACGH terá o número 1, ADIJ, o número
2 e AK LM, o número 3. Procederemos de forma análoga para todos os outros
pontos da reta r. Nos quadros seguintes podemos ver uma forma de numerar
as três retas distintas de r que incidem em cada um dos pontos A, B, E e F.

ACGH 1

ADIJ 2

AKLM 3

BCIK 1

BDHL 2

BGJM 3

CDEM 1

EGIL 2

EHJK 3

CFJL 1

DFGK 2

FHIM 3

Seguidamente construímos uma tabela de dupla entrada na qual colocare-
mos no cabeçalho os pontos da reta r e numa coluna auxiliar todos os pontos
que não pertencem à reta r, em ambos os casos optámos por colocar os pontos
por ordem alfabética. Tendo em consideração a numeração anteriormente atri-
buída a cada reta, preenchemos cada entrada da tabela colocando o número da
reta, que incide nos pontos que se encontram em linha e em coluna. Por exem-
plo na entrada (1,1) iremos escrever o número da reta que incide nos pontos á
e C, ou seja 1, na entrada (1,2) escreveremos o número da reta que incide nos
pontos B e C, que é também 1. Faremos um raciocínio análogo para o preen-
chimento das restantes entradas da tabela.

A B E F
C 1 1 1 1

D 2 2 1 2

G 1 3 2 2

H 1 2 3 3

I 2 1 2 3

J 2 3 3 1

K 3 1 3 2

L 3 2 2 1

M 3 J 1 J
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A partir desta tabela construímos uma matriz l/, da qual constam somente
os números da tabela.

Na matriz anterior vamos fazer permutações de linhas de modo a que as en-
tradas das duas primeiras colunas sejam os pares ordenados (1,2), (7,3), (2,7),
(2,2),(2,3),(3,1),(3,2),(3,3),porestaordem. Comesteobl'etivovamoscomeçar
por permutar a segunda com a quarta linha.

Finalmente permutamos a quarta linha com a quinta linha. À matriz que
obtivemos fazendo as permutações vamos chamar W.

Com a terceira e quarta colunas darr.aúiz W vamos construir duas matrizes
3 x 3, 5 e Q. Paraconstruir a matriz S consideramos a coluna três. A primeira
linha desta matriz é formada pelas primeiras três entradas da coluna três, a

segunda linha pelas três entradas seguintes e a terceira linha pelas três últimas
entradas, como podemos ver:

111
212

22
3L

1322
1,2 3 3

21.23
23 31
3132

t/-

2

2

3

1

2

1

J

111
233
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1.23

2272
23 31
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221
313

2

1J

[1 11
Ir 2 3

lr 3 2

lz2-l
lzlz
lz 3 3

ls 1 3

ls 2 z

Lr 3t

1

J

1,

1

2

W

J
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3.2 Quadrados latinos

^9-

Para construir a matriz Q, seguimos um raciocínio análogo ao anterior, mas
utilizaremos a quarta coluna da matrizW.

Q=

Observemos que as matrizes ,S e Q são quadrados latinos de ordem três.

Podemos facilmente verificar que estes dois quadrados latinos são ortogo-
nais. É de salientar que se utilizássemos as colunas um e dois da rnatriz W e
fizéssemos o mesmo processo que fizemos para as colunas três e quatro não iría-
mos obter quadrados latinos. No caso de utilizarmos a coluna um teríamos os

números repetidos em linha e no caso de utilizarmos a coluna dois teríamos os

números repetidos em coluna, não satisfazendo assim a definição de quadrado
latino.

Vejamos o porquê de obter a partir de um plano projetivo de ordem n = 3 um
conjunto de quadrados latinos ortogonais também de ordem n = 3. Sabemos
que num plano projetivo de ordem n = 3, segundo o teorema 3.1.10, em cada
ponto incidem exatamente quatro retas. Para construir a tabela escolheu-se, de
forma arbTtráia, uma das treze retas (foi escolhida a reta AB E F , mas poderia
ter sido outra qualquer). Como em cada ponto dessa reta incidem outras três
retas, numerámos estas últimas, também de forma arbitrária, com os números 1,

2 e 3. Esta forma de construção obriga a que nas entradas da tabela só apareçam
os números 1. ,2 e 3. Sabemos também, que num plano projetivo de ordem n = 3,

em cada reta incidem exatamente quatro pontos, de acordo com teorema3.l.9,
o que pode ser observado na tabela. Vemos que, em cada coluna existem três
entradas com o número L, três com o número 2 e três com o número 3. Em
cada coluna, as três entradas com o número L correspondem a três pontos de
uma mesma reta que passa também pelo ponto do cabeçalho dessa coluna. O
mesmo acontece para as entradas com os números 2 e 3. Reparemos ainda que,
ao escolher duas quaisquer colunas da tabela, obtemos uma matriz com nove
linhas e duas colunas; os pares ordenados que podemos ver em cada uma das
nove linhas são todos distintos. Isto fica a dever-se ao facto de duas retas terem
exatamente um ponto em comum, de acordo com teorema 3.1.3. De acordo
com o método de construção fizeram-se permutações na matriz l/ de modo a

obter uma matrizW em que nas duas primeiras colunas se obtiveram os pares

É i'l

3

1

2

132
z'.t 3

321

132
321
273
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ordenados (7,7), (7,2), (7,3), .. ., (3,3). A disposição das entradas da primeira
coluna da matriz trV implica que as matrizes S e Q não tenham duas entradas
iguais em linha, pois os pares ordenados não se repetem em quaisquer duas
colunas da matriz W. Pela mesma razáo, a disposição das entradas da segunda
coluna da matriz l4l implica que as matrizes 

^9 
e Q não tenham duas entradas

iguais em coluna. Assim arnatriz S e Q são quadrados latinos. Estes quadrados
latinos são ortogonais porque quando sobrepostos obtemos pares ordenados
distintos.

Como dissemos anteriormente, vamos fazer o processo inverso. Partiremos
de dois quadrados latinos ortogonais de ordem n = 3, diferentes dos anteriores,
e chegaremos a um plano projetivo de ordem n = 3. Consideremos os seguintes
quadrados latinos ortogonais:

A partir destes podemos considerar as seguintes matrizes:

V_ Z_

Consideremos ainda as matrizes:

Com as matrizes R,T,V e Z varnos construir uma matriz U. Para construir
a primeira coluna damatriz [/ vamos considerar amatriz -R, nas primeiras três
entradas colocamos os números que constam da primeira linha da :,r.atrizÀ, nas

três entradas seguintes colocamos os números que constam da segunda linha
da matriz e nas três últimas entradas os números que constam da terceira linha
da matriz R. Para construir a segunda, terceira e quarta colunas da rnatriz IJ

fazemos o processo análogo ao anterior, mas considerando as matrizes T, U e
Z, respetivamente.

ti )'ltl iil
lz 3 1l

'= [i ;'lil
l-1 1

a=lz z

Lr3

1,221,
1333

1 1

U
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3.2 Quadrados latinos

Nota 3.2.8. Notemos que se na matriz anterior escolhermos duas quaisquer
colunas obtemos todos os pares ordenados que é possível fazer com os números
L, 2 e 3, sem repetição. Para justificar a afirmação anterior consideremos três
possibilidades:

1. escolher a primeira coluna e outra coluna qualquer;

2. escolher a segunda e a terceira ou quarta colunas;

3. escolher as duas últimas colunas.

1.. se escolhemos a primeira coluna, que é construída a partir da matriz R,
em que cada linha tem o mesmo número (a primeira linha tem o número 1, a
segunda linha tem o número 2 e terceira linha tem o número 3) e a segunda
coluna que é construída a partir da rr.atriz 7, na qual os números 1,, 2 e 3 não se

repetem nas linhas, mas nas colunas, portanto os pares ordenados obtidos por
entradas destas duas colunas vão ser sempre distintos. Escolhendo a primeira
coluna e a terceira ou a primeira e a quarta colunas também vamos obter sempre
pares ordenados distintos, pois a terceira e a quarta colunas são construídas a

partir das matrizes V e Z, respetivamente, que são quadrados latinos formados
com os números 1,2 e 3.

2. se escolhemos a segunda e a terceira ou quarta colunas, aparecem todos
os pares ordenados, pois como foi dito anteriormente, a segunda coluna é cons-
truída a partir da m atizT que tem o mesmo número em cada coluna e a terceira
ou quarta colunas são construídas a partir das matrizes V e Z, respetivamente,
que são quadrados latinos.

3. se escolhermos as duas últimas colunas aparecem todos os pares ordena-
dos, pois estas são construídas a partir de quadrados latinos ortogonais.

Com base na matriz [/ vamos construir uma tabela na qual colocaremos no
cabeçalho de cada coluna os pontos A, B, C e D, e numa coluna auxiliar os
pontos E, F, G, H, I, J, L, M e l/, a escolha dos pontos foi arbitrária e em
ambos os casos optámos por colocar os pontos por ordem alfabética.

Os pontos do plano projetivo de ordem três são aqueles que aparecem na
tabela: A, B, C, D, E, F, G, H,I, J, L, M e lí. Vamos construir as retas do
mesmo plano. Começamos por construir uma reta incidente nos pontos que se

A B C D
E 1 1 1 2

F 1 2 2 1

G 1 3 3 3

H 2 1 3 1

I 2 2 1 3

J 2 3 2 2

L 3 1 2 3

M J 2 3 2

I'r 3 3 1 1
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encontram no cabeçalho da tabela, que denominamos por ABCD. Para cons-
truir as restantes retas procederemos da seguinte forma: consideremos a pri-
meira coluna. Construímos uma reta incidente no ponto Á e em todos os pon-
tos a que corresponde uma entrada 1, como estes são E, F e G denominamos
a reta por AEFG. No ponto Á e em todos os pontos a que corresponde uma
entrada 2 construímos a reta que denominamos por AH I J. Finalmente cons-
truímos a reta que incide no ponto Á e em todos os pontos a que corresponde
uma entrada 3, que denominamos por ALM lli. Consideremos cada uma das
outras colunas e por processo análogo ao anterior construímos as restantes re-
tas. As retas que são obtidas com base nesta tabela são: ABC D, AE FG, AH I J ,
ALMN, BEHL, BFIM, BGJN, CEIN, CFJL, CGHM, DFHAT, DEJM C

DGIL. O plano projetivo de ordem n = 3 é formado pelos treze pontos e pelas
keze retas atrás indicados.

Vamos seguidamente verificar que este plano que acabamos de construir é

um plano projetivo e satisfaz os axiomas }{L,H2, Ha e FIa.

Axioma H1: Existem pelo menos quatro pontos não colineares três a três.

Para verificar o axioma escolhemos quaisquer duas colunas, por exemplo a

segunda e terceira colunas, a que correspondem respetivamente os pontos B e
C. Seguidamente escolhemos duas linhas em que as respetivas entradas corres-
pondam a pares ordenados em que a primeira e a segunda coordenada sejam

diferentes, de modo a conseguir obter sempre quatro pontos não colineares três
a três. Por exemplo, escolhendo as linhas que correspondem aos pontos E e F,
obtemos os pares ordenados (1,1) e (2,2). Os pontos B, C e f'não incidem na
mesma reta e os pontos C, E e F' também não incidem na mesma reta, devido
ao processo de construção das retas. A única reta que incide nos pontos B e C
é a reta ABC D, portanto nenhum dos pontos E ou F é colinear com B e C.

Axioma H2: Existe pelo menos uma reta incidente com exatamente n + 1

pontos distintos.
Como n = 3 podemos reescrever o axioma do seguinte modo: existe pelo

menos uma reta incidente com exatamente quatro pontos distintos.
A reta ABCD que incide nos pontos que estão no cabeçalho tem quatro

pontos, logo o axioma é verificado.

Axioma H3: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Para verificar o axioma vamos tomar dois pontos distintos, quaisquer e te-
mos três casos a considerar:

1. os dois pontos estão no cabeçalho;

2. um dos pontos está no cabeçalho e o outro ponto está na coluna auxiliar;

3. os dois pontos estão na coluna auxiliar.

Casol: se os dois pontos estão no cabeçalho incide neles a reta ABC D enão
incide mais nenhuma de acordo com o método de construção.
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3.2 Quadrados latinos

Caso2: se um dos pontos está no cabeçalho e o outro ponto está na coluna
auxiliar, o método de construção garante que só passa uma reta pelo ponto que
está no cabeçalho e pelos três pontos da respetiva coluna que tenham a mesma
entrada, logo o axioma é verificado.

Caso 3: suponhamos finalmente que os dois pontos estão na coluna auxilial,
e observemos o seguinte:

Nota 3.2.9. Reparemos que:

. cada linha da matriz [/ é constituída pelas entradas de uma determinada
posição das matrizes R, T, V e Z. De facto,

U_

Por exemplo, a linha da tabela correspondente ao ponto J tem as entradas
na posição (2,3) destas matrizes, rzi = 2, t23 = 3, uzi = 2 e zz,z - 2.

o Dois pontos da coluna auxiliar incidem numa única reta se e só se existir
uma única coluna na tabela em que as entradas sejam iguais. Por exemplo, os

pontos J e M incidem numa única reta porque na última coluna da tabela têm
entrada 2, correspondente à reta DEJM.

Separemos ainda nos dois casos seguintes:

a. os dois pontos têm a entrada da primeira coluna igual;

b. os dois pontos têm a entrada da primeira coluna diferente.

Caso a: se os dois pontos têm a entrada da primeira coluna igual, existe
uma única reta incidente no ponto Á e nesses dois pontos. Este facto deve-se ao
método utilizado na construção das retas. Dada a distribuição das entradas da
matr.z, rB, sabemos que os pontos correspondem em todas as matrizes a entra-
das da mesma linha. Como nas matrizesT,V e Z não há repetição de entradas
na mesma linha sabemos que a reta é única.

Caso b: se os dois pontos têm a entrada da primeira coluna diferente, então
temos novamente dois casos a considerar.

bl. os dois pontos têm a entrada da segunda coluna igual;

ht u1t zrr)
tn u'tz ,rrl
tn UB ,rZl
tz-t U21 

"r, 
I

tZZ 't)22 
"rrltzt uz3 ,rrl

tt u37 "rrltzz u32 "rrltn u33 z*)

r77

r72

rB
r21.

r22

r23

131

r3z

b2. os dois pontos têm a entrada da segunda coluna diferente.
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Caso bl: como os dois pontos têm a entrada da segunda coluna igual, po-
demos concluir que existe uma reta que passa pelo ponto B e por esses dois
pontos e que as entradas, da tabela, destes dois pontos se encontram na mesma
coluna das matrizes R, T, V e Z. Não existem mais retas, pois por hipótese os

pontos têm na tabela a entrada da primeira coluna diferente e a terceira e quarta
coluna da tabela corresponde às matrizes V e Z que são quadrados latinos or-
togonais e as entradas destes dois pontos encontra-se na mesma coluna destas

matrizes, logo a terceira e quarta coluna da tabela têm de ser diferentes.

Caso b2: se os dois pontos têm a entrada da segunda coluna diferente temos
também de considerar dois casos.

b2.1. os dois pontos têm a entrada da terceira coluna igual;

b2.2. os dois pontos têm as entradas da terceira coluna diferentes.

Caso b2.L: se os dois pontos têm a entrada da terceira coluna igual, então
existe uma reta incidente no ponto C e nesses dois pontos. Por hipótese em
cada uma das duas primeiras colunas as entradas são diferentes. As entradas
da terceira e da quarta coluna também são diferentes, pois são obtidas a par-
tir de quadrados latinos ortogonais, logo se fossem iguais, ao sobrepormos as

matrizes iríamos ter pares ordenados iguais, o que contradiria a definição de
quadrados latinos ortogonais. Portanto a reta incidente nos dois pontos é única.

Casob2.2: se os dois pontos têm as entradas da terceira coluna diferentes,
então a entrada da quarta coluna tem de ser igual. Vejamos porquê. Consi-
deremos dois pontos, um de entrada (i, j) e outro de entrada (i' , j'). Sabemos

que as entradas dos dois pontos da primeira coluna da tabela são diferentes,
o que quer dizer que na matriz À essas entradas estão em linhas diferentes
( isto é, se rii / ri,i, então i / i'). Também sabemos que as entradas dos dois
pontos da segunda coluna da tabela são diferentes, logo essas entradas na ma-
triz T estão em colunas diferentes ( isto é, se ti, / ti, i, então j / j'). Como as

entradas da terceira coluna dos pontos também são diferentes, as entradàsuii e

ai, i, são distintas. A matriz V é um quadrado latino e portanto a entrada uii tern
de ser diferente das entradas uii, s ui,i. Analogamente a entrada ui, i, tern de ser
diferente das entradas uiir e ui, i. Como as entradas são compostas apenas pe-
los números 7,2 ou 3 a única forma de isto acontecer é termos uma igualdade
nas entradas uii, s ui,i. As matrizes V e Z são quadrados latinos ortogonais,
assim os pares orden ados (uii, , ,oi,) e (ro,r, ,r, j) são distintos. Como os pares
ordenados anteriores são distintos e as entrad as uij, e uy i sáo iguais, então as

entradas ziri ? ziirtàÍÍrbém são distintas. Mas sendo amatriz Z um quadrado
latino vemos analogamente que as entradas Zii ê zi,ir são iguais. Portanto as

entradas dos pontos da quarta coluna da tabela são iguais. Podemos concluir
que existe uma única reta incidente nesses dois pontos.

Axioma Ha: Dadas duas retas distintas, existe pelo menos um ponto inci-
dente com ambas.

Para verificar este axioma tomemos quaisquer duas retas e consideremos
dois casos:
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3.3 Planos Projetivos Finitos e Códigos

1. uma das retas é a reta ABC D e uma outra reta distinta desta;

2. as duas retas são distintas da reta ABC D.

Caso l.: areta ABC D é a reta incidentenos pontos A, B,C e D, docabeçalho
da tabela. Qualquer uma das outras retas, de acordo com o método de constru-

ção, incide num ponto do cabeçalho e nos três pontos dessa coluna que tenham
uma mesma entrada. Assim a reta ABC D e qualquer outra reta têm um ponto
em comum, que é o ponto que está no cabeçalho. Por exemplo, se considerar-
mos a segunda coluna e todos os pontos que tenham entrada 3 obtemos a reta
BGJN. Esta reta e a reta ABC D têm o ponto B em comum.

Caso 2: se considerarmos duas retas distintas da reta ABC D, vamos ter dois
CASOS:

a. as duas retas foram construídas a partir da mesma coluna;

b. as duas retas foram construídas a partir de diferentes colunas.

Caso a: se as retas foram construídas a partir da mesma coluna incidem
ambas no ponto que está no cabeçalho dessa coluna, de acordo com o método
de construção. Por exemplo, se considerarmos a terceira coluna e uma reta de
entrada 1 e uma reta de entrada 2, temos as retas CEIN e CFJL, que se inter-
setam no ponto C.

Caso b: se as duas retas foram construídas a partir de diferentes colunas,
uma das retas corresponde a uma entrada r numa coluna e a outra reta a uma
entrada y na outra coluna. Portanto o ponto de interseção é o ponto da coluna
auxiliar ao qual corresponde, nas duas colunas, o par ordena do (r, y) (de acordo
com a nota 3.2.8 este par ordenado aparece sempre e é único). Por exemplo,
se considerarmos uma reta da primeira coluna com entrada L e uma reta da
quarta coluna com entrada 3, o ponto de intersecção destas retas é o ponto ao
qual corresponde o par ordenado (1,3), ou seja o ponto G.

3.3 Planos Projetivos Finitos e Códigos

A teoria dos códigos dedica-se a detetar e a corrigir erros que são introduzidos
quando são transmitidas as mensagens. Tornou-se numa importante área de
pesquisa utilizando resultados da geometria projetiva, teoria dos grupos, teoria
dos corpos finitos, entre outras.

Nesta secção iremos partir dum plano projetivo e obter um código. Iremos
trabalhar com códigos binários, ou seja, conjuntos de sequências de zeros e uns
com um dado comprimento. Alguns códigos têm estrutura de espaço vetorial,
como é o caso dos que vamos trabalhar, e podem ser definidos como vetores. A
cada sequência chamamos palavra de código.

Os códigos binários são os códigos com mais aplicações e consequentemente
os mais utilizados.
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Vamos introduzir algumas definições da teoria dos códigos que servirão de
base à construção de um código a partir de um plano projetivo.

Definição 3.3.1. Um corpo é um conjunto F munido de duas operações binárias, a

adição e a multiplicaçã0, para o qual se aerificam os seguintes axiomas.

Sejam a,b,c e F quaisquer. Então:

o a + b € F e a x b e F (F é fechado para a adição e pfira a multiplicação);

o a + b = b + a e a x b = b x a (propriedade comutatiaa);

c (a+b) +c= a+(b+ c) e(a x b) x c= o x (ó x c) (propriedadeassociatiaa);

o a x (ô + c) - a xb+ ax c(propriedadedistributiz;adamultiplicação emrelação

à adição)

o existemelementosdistintos0eT e F taisque,paraqualquer a e F,0+ a = a
(elemento neutro da adição), La = a (elemento neutro para a multiplicação);

o existe um elemento *a e F tal que a + (-a) = 0 (simétrico);

. se a / 0, então existe um elemento a 1 e F tal que a x a 1 = 1 (inaerso).

Alguns exemplos de corpos que são muito conhecidos e trabalhados em ma-
temática são o conjunto dos racionais Q, cory'unto dos reais IR e o conjunto dos

complexos C.
Por exemplo o conjunto dos naturais N não é um corpo porque nem todos os

números têm simétrico, como é o caso do número 2. O conjunto Z tarnbérnnáo
é um corpo, pois nem todos os números têm inverso, como exemplo o número
3.

Definição 3.3.2. Designamos por F2 o conjunto {0,71 munido pelas operações de adi-

ção e multiplicação definidas pelas tabelas seguintes.

Podemos verificar que o conjunto F2satisfaz todas as condições da definição
3.3.1, portanto é um corpo. Este corpo é menos conhecido, mas é extremamente
útilna teoria dos códigos.

DeÍinição 3.3.3. Seja F um corpo. Um espaço oetorial (ou espaço linear) sobre F é

um conjunto V (não aazio) munido de duas operações, uma a que chamamos adição de

oetores e outra multiplicação por escalares (elementos de F), satisfozendo as seguintes

condições:

Sejam u,'ü,1.D € V e X, p. e F, quaisquer. Entõo:

+ 10

0

1

0

1

1

0

0

1

10X

0

1

0

0
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3.3 Planos Projetivos Finitos e Códigos

o u+u eV;

o (u+u)+w=u+(u+w))

. u+u=u*U)

o existeumelemento0 e V comapropriedade 0+?, = u,paraqualqueru €V;

o existe um elemento de V chamado -u tal que u + (-u) = 0;

o Àu €V;

o À(t.c + u) = Sy+ À2,(À + p)u = Àu+ p"u;

. (Àp)u=À(p,u);

o se 1. é o elemento neutro para a multiplicação em F, então 1.u = u.

Um espaço vetorial conhecido é JR2, munido das operações usuais. Em geral
lR.' também é um espaço vetorial sobre lR pois satisfaz todas as condições acima
definidas. Isto é válido para qualquer corpo I'ou seja, f'' é um espaço vetorial
sobre.P. No contexto da teoria dos códigos, que nos interessa, vamos considerar
o espaço vetorial .t'2'.

Definição 3.3.4. Um subconjunto C @ão aazio) de um espaço aetorial V sobre F é

um subespaço aetorial deV se e só se satisfaz a condição:

se u,a e C e ),, pt e F então Àu + pru e C.

Exemplo 3.3.5. Consideremos o espaço vetorial tr'23. Podemos verificar que,
como conjunto,

F23 = {(0,0,0),(0,0,1) ,(0,7,0),(1,0,0) ,(7,7,0),(0,1,1) ,(7,A,1),(1,1,1)}.

Consideremos o seguinte subconjunto do espaço vetorial f'23:

C = {(0,0,0) , (0,0, 1) , (0, 1,0), (0, 1, 1)} .

Facilmente verificamos que o conjunto C satisfaz a definição 3.3.4 e portanto
é um subespaço vetorial de Fz3.

DeÍinição 3.3.6. Seja V um espaço aetorial sobre F e sejam ut, . . . ,'t)r aetores de V.
Dizemos que um aetor u e V é combinação linear dos aetores u1., . . . , ur se existem

escalares \,t,...,À" e F, tais que

u = \tat + "'+ 
^rar

Definição 3.3.7. Seja V um espaço aetorial sobre F. Um conjunto de aetores

{rr, . . ., u,} un V é linearmente independente se para quaisquer \1, . . ., À, e F,

Àtur + "'+ 
^rur 

- 0 =+ Àt = "'= À" = 0.
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Exemplo 3.3.8. O conjunto de vetores {(0,0,1),(0,1,0),(0,1,1)} não é linear-
mente independente, pois o terceiro vetor é obtido a partir da soma dos dois
primeiros. Portanto podemos escrever

1 x (0,0,1) + 1 x (0,1,0) + 1 x (0,1,1) = (0,0,0).

Por outro lado, podemos ver que o conjunto de

{(0,0, 1) , (0, 1,0) , (0, 0, 1)} é linearmente independente.
vetores

Definição 3.3.9. SejaV umespaçoaetorialsobre F eseja S = {ut,'ü2,...,up} um

subconjunto de V não aazio. O espaço oetorial gerado por S é deJinido por:

(S) = {À1o1 + ),2u2+... + À7xu1x : \1,...,),p Ç F}.

DeÍinição 3.3.10. Seja V um espaÇo oetorial sobre F. Um subconjunto
B = {u1,u2,...,r0} deV édesignadoumnbasedeV seV = (Bl e B élinearmente
independente.

Exemplo 3.3.1L. Consideremos o subconl'unto B = {(1,0,0),(0,1,0),(0,0,1)}
de F23 . Este conjunto de vetores gera o espaço vetor ial F23 e, como já foi referido
atrás, é linearmente independente, logo é uma base deste espaço vetorial.

Definição 3.3.12. A dimensão de um espaço aetorial V é o número de elementos de

uma base.

Definição 3.3.13. Um código linear binário, de comprimento n, é um subespaço aeto-

rial de F2".

Definição 3.3.14. Uma matriz geradora G para um código linear C é uma matriz cujas

linhas formam uma base para C.

Definição 3.3.L5. Seja r um plano projetioo finito. Um código binário C associado a

r é um espaÇo aetorial sobre F2 gerado pelas linhas de uma matriz de incidência de r.

Iremos exemplificar como a partir de um plano projetivo finito podemos ob-
ter um código. Comecemos por introduzir a definição de matriz de incidência.

Definição 3.3.L6. Seja r um plano projetiao Jinito de ordem n. Uma matriz de in-
cidência A = Looi) de r é uma matriz (nz + n+ 1) x (nz + n + 1), onde as retas

são representadas pelas colunas e os pontos são representados linhas, de tal forma que

ooj = 1 se o ponto correspondente àlinhaipertenceàreta correspondente àcolunaj;
caso contrário at.j = O.

Consideremos a tabela de incidência construída no plano projetivo de or-
dem n = 2, dada no exemplo 3.1.12 da secção 3.1 deste capítulo. As retas estão
representadas no cabeçalho e os pontos estão representados na coluna auxiliar.
Nesta, o número 1 significa que o ponto pertence à reta e o número 0 significa
que o ponto não pertence à reta.
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3.3 Planos Projetivos Finitos e Códigos

ABF ACE ADG BCG BDE CDF EFG
A 1 1 1 0 0 0 0

B 1 0 0 1 1 0 0

C 0 1 0 1 0 1 0

D 0 0 1 0 1 1 0
E 0 1 0 0 1 0 1

F 1 0 0 0 0 1 1

G 0 0 1 1 0 0 1

A cada linha da tabela podemos fazer corresponder um vetor. Assim, por
exemplo, o ponto Á pode ser representado pelo vetor (1, 1,L,0,0,0,0). Cada
vetor é formado por 7 componentes, cada uma das quais é 0 ou 1. Cada ve-

tor dado, por cada um dos sete pontos, tem exatamente três componentes de

valor 1, isto acontece porque cada reta do plano projetivo de ordem dois tem
exatamente três pontos.

A partir da tabela e de acordo com a definição 3.3.16 obtemos a seguinte
rr.atriz de incidência.

M2-

Procuramos, de acordo com a definição 3.3.15, o código Cz, associado ao

plano projetivo de ordem dois, gerado pelas linhas da matriz M2. Podemos
observar que as linhas da matriz My não são linearmente independentes, por
exemplo, a linha 1 é igual à soma das linhas 2,3 e 4. Por uma questão de simpli-
cidade procuramos uma matriz Gz geradora do código C2, cujas linhas formam
uma base de Cz. Para obter a matriz Gzrealizaremos operações elementares en-

tre as linhas da matriz M2. Por exemplo a operação L2+ L5 + Lzsignifica quc
adicionamos as linhas 2 e 6 da matriz M2 e vamos colocar o resultado na linha
2 darnatriz seguinte. Como estamos a trabalhar em f,2 utilizamos as operações
da definição 3.3.2, assim (1001100) + (1000011) = (0001111).

Vamos explicar mais detalhadamente como obter a matriz G2 a partir da
matriz M2. Começamos por realizar sucessivamente as operações na matriz
Mz:

L5êL1
L5êL2
La <+ L3

e obtemos a matriz seguinte:

111000
100110

1000011
0011001

0

0101010
0010110
0100101
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0

000011
100101

0010110
0101010

1110000
0011001

1000011
0100101

0011001
1110000

000011
100101

0010110
0001111

0011001
0110011

000011
100101

0010110
0001111

0011001
0010110

1001100

Agora nesta matriz vamos realizar as operações

Laê L5

L7eL6

e obtemos amatrizi

A partir desta última matriz vamos sucessivamente realizar as operações
seguintes:

La+ L1 -+ L+

L7+L1-aLz
e obtemos amatrizi

Seguidamente vamos realizaÍ a operação:
L7 + L2 --+ Lz

obtendo a matÍiz

0010110
1001100
0101010

0

0101010

0

0101010
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3.3 Planos Proietivos Finitos e Códigos

Nesta última matriz realizamos a operação:

L7 + L3 --+ Lz

e obtemos a matriz:

Finalmente realizamos sucessivamente as operações

e obtemos a matriz

Obtivemos uma matriz em que as três últimas linhas são nulas. As linhas
não nulas desta matriz formam a matriz G2.

Gz=

Nota 3.3.17. As operações elementares que realizámos para obter a matiz G2,

em álgebra linear designam-se por método de Gauss.

Como as linhas da matriz G2 formam uma base do código, sabemos que o
código C2 gerado tem dimensão 4, de acordo com a definição 3.3.1,2. Por esta

razão o código tem 2a = 16 palavras. As 16 palavras do código são todas as

combinações lineares das linhas da matriz Gz, não esquecendo que todas as

operações são realizadas em f'2.

As 16 palavras do código são:

L2 + L5 ---+ Ls
L3 + L5 ---+ Ls
L6+ L5 + Ls
L3 + L6 ----+ Le

La + L6 ----+ Le

0

01.01010

0

0000000

000011
100101

0010110
0001111

0011001
0000000

000011
100101

0010110
0001111

0000000
0000000

000011
100101
01011
00111

0
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0000000
1000011
0100101
0010110
0001111
1100110
1010101
1001100
0110011
0101010
0011001
1110000
1101001
1011010
0111100
1111111

O código C2 q1ue obtivemos é um código binário de acordo com a definição
3.3.13.

Definição 3.3.18. 1. Se doisz,tetores (q,...,un) e (w1,...,lrn), satisfazem acon-
dição u1w1+ . . . + unun = 0 dizemos que os aetores são ortogonais.

2. O dual de um código C é um código CL definido por:

CL = {(q,...,un) € Fi :Y(.r,...,wn) € C,u1w1+... + unwn =Q}.

DeÍinição 3.3.19. Uma matriz de paridade H para um código linear C é uma matriz
geradora para o dual do código CL.

Definição 3.3.20. Seja r > 2. Llm código binário de comprimento n = 2' - 7, com

matriz de paridade H cujas colunas são compostas por todos os aetores não nulos de

F2' é chamado um código binário de Hamming de comprimento 2' * 1..

A matriz seguinte é um exemplo de uma matriz paridade para o código
definido anteriormente:

H_

Facilmente verificamos que as linhas desta matriz fI são ortogonais a todas
as palavras deste código e de acordo com a definição 3.3.19, esta é uma matriz
geradora do código dual.

Como as colunas de 11 são todos os elementos não nulos de F23,por defini-

ção este é um código de Hamming. Este código é conhecido como um código
de Hamming (7,4), em que 7 significa o comprimento de cada palavra e 4 a
dimensão do código.

í-000111
lo 1 1 o o 7

Lrololo
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3.3 Planos Projetivos Finitos e Códigos

Os códigos de Hamming são uma família importante de códigos porque
são particularmente eficientes quando queremos detetar e corrigir erros. São

códigos lineares que podem ser definidos sobre um corpo finito, o exemplo
que apresentamos foi um código definido sobre ,F2.

A partir de um plano projetivo de ordem três também se pode obter um có-
digo, que designaremos por C3. O modo como se obtém o código é semelhante
ao anterior mas existe uma diferença que veremos mais à frente.

Consideremos a tabela de incidência obtida a partir do exemplo 3.1.13 da
secção 3.1 deste capítulo.

A partir da tabela obtemos amatnz de incidência.

M3=

1

111000000000
000111000000

0100100110000
0010010101000

0010001010010
0001100001010

001010010100
001001100001

0

1000000100110
1000000011001
0100001001100
0100010000011
0010100000101

t\
r{]
§

\J
o

\\
a

{v
v
\()
\]

ç
{i
Ll
§

\
\J

ts
a
U

ç\
\
o

v
!)\
r,1

.l\
*l

\
{i
tl ts

T,

A 1 1 1 1 0 0 0 0 0 0 0 0 0
B 1 0 0 0 1 1 1 0 0 0 0 0 0

C 0 1 0 0 1 0 0 1 1 0 0 0 0
D 0 0 1 0 0 1 0 1 0 '), 0 0 0

E 1 0 0 0 0 0 0 1 0 0 1 1 0
F 1 0 0 0 0 0 0 0 1 1 0 0 1

G 0 1 0 0 0 0 1 0 0 1 1 0 0
H 0 1 0 0 0 1 0 0 0 0 0 1 1

I 0 0 1 0 1 0 0 0 0 0 1 0 1

J 0 0 1 0 0 0 1 0 1 0 0 1 0
K 0 0 0 1 1 0 0 0 0 1 0 1 0
L 0 0 0 1 0 1 0 0 1 0 1 0 0

M 0 0 0 1 0 0 1 1 0 0 0 0 1
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Realizando operações elementares entre as linhas darnatrizM3 iremos obter
uma matriz geradora G3 de um código. Um exemplo de uma matriz geradora
pode ser a seguinte matriz:

Gs=

A matriz G3 tem 12 linhas linearmente independentes, logo o código gerado
tem dimensão 12. Gera um código de 212 = 4096 palavras. As 4096 palavras do
código são todas as possibilidades de adições entre as linhas da matriz Gt, não
esquecendo que estas adições são realizadas em F2.

Este código de 4096 palavras que se obtém não é um código de Hamming,
como aconteceu no primeiro exemplo. De acordo com a definição 3.3.20 um
código de Hamming tem comprimento n = 2'- 1 e este código de comprimento
13 não pode ser obtido dessa forma.

Como foi dito na secção 3.1, não se sabe se existem planos projetivos fini-
tos de ordem n, para alguns valores de n. Recorrendo à teoria dos códigos, e

devido à relação entre os planos projetivos finitos e os códigos binários foi pos-
sível mostrar que não existe nenhum plano projetivo de ordem 10, questão que
estava em aberto há muito tempo. Isto resultou de um extenso trabalho com a

contribuição de muitos matemáticos e culminou em 1989 no artigo [LTS89] de

Lam, Thiel e Swiercz. Estes matemáticos recorreram a uma pesquisa exaustiva
de diferentes casos com o auxílio de computadores.

3.4 Espaços projetivos finitos

Vamos agora ver uma generalizaçáo dos planos projetivos finitos. Embora este

sistema axiomático não limite o número de dimensões, os exemplos que aqui
estudamos incidem principalmente no espaço tridimensional. Nesta geometria,
para além dos termos indefinidos que temos utilizado até agora, vamos utilizar
um termo definido a partir destes, que é o termo plano. Como nos axiomas nos
vamos referir a este termo, comecemos por introduzir a sua definição.

0

000000000001
100000000001

0010000000001
0001000000001
0000100000001
0000010000001,
0000001000001
0000000100001
0000000010001
0000000001001
0000000000101
0000000000011
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3.4 Espaços proietivos finitos

DeÍinição 3.4.1. Dados um ponto Re uma reta s não incidente no ponto R, ao conjunto
de todos os pontos pertencentes às retas que passam pelo ponto R e intersetam a reta s

é chamado plano definido pelo ponto R e pela reta s.

Consideremos agora os axiomas.

Axiomas:

Axioma 11: Se Á e B são pontos distintos, existe, no mínimo uma reta incidente
em ambos os pontos Ae B.

Axioma 12: Se A e B são pontos distintos, não existe mais do que uma reta
incidente em ambos os pontos.

Axioma 13: Se E, C, B e D são quatro pontos não colineares três a três e existe
um ponto Á tal que os pontos A, E e C são colineares e os pontos A, B e

D são colineares, então existe um ponto f' tal que os pontos E, B e F sáo
colineares e os pontos C, D e -P são colineares (fig. 3.18).

A

D

Figura 3.18

Axioma [a: Existe, no mínimo uma reta.

Axioma 15: Nem todos os pontos estão na mesma reta.

Axioma 16: Existem, no mínimo três pontos em cada reta.

Axioma 17: Nem todos os pontos estão no mesmo plano.

Axioma I3: Existe uma reta com n + L pontos.

Com base nestes axiomas demostraremos as próximas afirmações.

Teorema 3.4.2. Dois pontos distintos incidem exatamente numa reta.

Demonstração:

Sejam P e Q dois pontos distintos dados. De acordo com os axiomas 11 e 12

existe exatamente uma reta incidente em ambos. tr
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Teorema 3.4.3. Se os pontos R e S pertencem à reta PQ, então os pontos P e Q
pertencem à reta RS.

Demonstração:

Sejam R e 
^9 

dois pontos distintos pertencentes à reta PQ. De acordo com o
teorema 3.4.2 existe exatamente uma reta incidente nos pontos Â e ,S, a reta rB§.

As retas RS e PQ representam a mesma reta, pois caso contrário obteríamos
uma contradição com o axioma 12. Assim os pontos P e Q pertencem à reta .tBS.

I

Teorema 3.4.4. Duas retas distintas não têm mais do que um ponto em comum.

Demonstração:

Sejam r e s duas retas distintas. Suponhamos, com vista a um absurdo, que
as retas r e s incidem em dois pontos P e Q distintos (fig. 3.19).

P

Figura 3.19

Se P e Q são pontos distintos, pelo teorema3.4.2, existe exatamente uma
reta incidente em ambos os pontos, logo as retas r e s são coincidentes. Isto é

absurdo, porque as retas dadas são distintas. Portanto duas retas distintas não
têm mais do que um ponto em comum. n

Teorema 3.4.5. Se P e Q são dois pontos que estão num plano r, então todos os pontos

da reta PQ estão no plano r.

Demonstração:

Seja r-um plano e seja r? um ponto e .s uma reta tais que z'é definido pelo
ponto R e pela reta s. Dados dois pontos P e Q do plano zr, podemos ter cinco
casos, qualquer outro será análogo a estes.

1. Os pontos P e Q pertencem à reta s.

2. Um dos pontos P ou Q coincide com o ponto rB.

3. A reta PQ incide no ponto.B.

4. Os pontos P,Q e Esãonão colineares eopontoPpertenceà reta seo
ponto Q não pertence à reta s.

,9

r
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5. Os pontos P, Q e À são não colineares e os pontos P e Q não pertencem
à reta s.



3.4 Espaços projetivos finitos

Nos casos 1,,2 e 3 pela definição de plano, todos os pontos da reta PQ estão no
plano zr.

Caso 4: Como o ponto I pertence ao plano, a reta ftQ interseta a reta s

num ponto M,por definição. Seja ? um ponto qualquer da reta PQ $9,. 3.20).
Aplicando o axioma 13 aos pontos Q, M, R, P e 7, existe um ponto J tal que

Figura 3.20

os pontos M , P e..I são colineares e os pontos R, T e J são colineares, isto é, as

retas,BT e MP têm oponto.Iemcomum. Como as retas MP e s são a mesma,
o ponto 7 pertence ao plano por definição (fig. 3.21).

P

Figura 3.21

Caso 5: As retas PR e QR intersetam a reta s nos pontos M e N, respetiva-
mente, por definição de plano. Aplicando o axioma 13 aos pontos R, P, M, Q e
N existe um ponto ,S comum às retas PQ e M N (hE. 3.22).

Estamos nas condições do caso anterior pois a reta PQ tem um ponto na
reta s, então todos os seus pontos pertencem ao plano. !

Lema3.4.6. Sejar oplano definidoporumponto Reumareta s. Se P eQ sãopontos
do plano r, então a reta PQ interseta a reta s.

Dernonstração:

As retas RQ e PBntersetam a reta s em dois pontos N e M, respetivamente,
por definição de plano. Aplicando o axioma 13 aos pontos R, Q, I,{ , P e M existe

R

s
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a

Ms
N

Figura3.22

um ponto S tal que os pontos Q, P e S são colineares e os pontos N, M e S
são colineares, isto é, as retas QP e l,IM (ou seja a reta s) têm um ponto S em
comum. Portanto arcÍa PQ interseta a reta s. fl

Teorema 3.4.7 . Quaisquer duas retas no mesmo plano têm um único ponto em comum.

Demonstração:

Seja r o plano definido pela reta s e pelo ponto ,8. Sel'u* dadas duas retas r
e ú do plano zr. Podemos ter dois casos:

1. uma das retas coincide com a reta s;

2. as retas r e ú são distintas da reta s.

Caso 1: suponhamos que a reta r coincide com a reta s. A reta ú tem no mínimo
três pontos pelo axioma 15. Sejam Q e P dois desses pontos. As retas RQ e RP
intersetam a reta s nos pontos N e M respetivamente, por definição de plano.
Aplicando o axioma 13 aos pontos R, Q, I{, P e M existe um ponto J tal que os

pontos Q, P e Jsãocolinearese ospontos N e M e Jsãocolineares,istoéas
retas ú e s têm um ponto J em comum (hg. 3.23).

P

t

r=§
M

Figura 3.23

Caso 2: As retas r e ú incidem em pelo menos três pontos cada. Sejam á e B
dois pontos da reta r e C e D dois pontos da reta ú. As retas r, AC e BD inter-
setam a reta s em pontos S, l/ e M, respetivamente, pelo lema 3.4.6. Aplicando
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3.4 Espaços proietivos finitos

o axioma 13 aos pontos S, A, B, N e M, existe um ponto -F talque os pontos Á,
N e f'são colineares e os pontos B, M e F'são colineares (fig. 3.24).

Ra

C

s

Figura .24

Aplicando novamente o axioma I3 aos pontos F, A, C, B e D, existe um
ponto J tal que os pontos A, B e J são colineares e os pontos C, D e J são
colineares, isto é as retas r e ú têm um ponto em comum (fig. 3.25).

r

.9

Figura 3.25
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Definição 3.4.8. Dados um plano T e um ponto P não incidente no plano ir, ao con-

junto de todos os pontos que incidem nas retas que passam pelo ponto P e que intersetam

o plano r é chamado espaço tridimensionalf definido pelo ponto P e pelo plano r.

Teorema 3.4.9. Seja a um plano qualquer e seja p um plano definido por uma reta s

e por um ponto Q. Se o ponto Q e a reta s estkterem sobre o plano a então os planos a
e B são coincidentes.

Danonstração:
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Suponhamos que o ponto Q e areta s estão sobre o plano rr. Seja ,4 um ponto
qualquer do plano a. Como o ponto Q está sobre o plano a, todos os pontos
da reta AQ, de acordo com o teorema 3.4.5, estão sobre o plano a. As retas s e

ÁQ intersetam-se num ponto, segundo o teorema 3.4.7. O ponto Á está sobre
uma reta que incide no ponto Ç e interseta a reta s, por definição de plano p, o
ponto AesÍá sobre o plano B.

Seja C um ponto qualquer do plano p. Por definição de plano, a reta CQ
interseta a reta s num ponto D. A reta s está sobre o plano rr, portanto o ponto
D é um ponto do plano a. Segundo o teorema 3.4.5, como o ponto D incide no
plano a, todos os pontos da reta QD estão sobre o. Logo em particular o ponto
C incide em a.

Concluímos assim que os planos a e p são coincidentes.
tr

Teorema 3.4.10. Se dois planos distintos a e p têm dois pontos A e B distintos em

comum, então os pontos comuns aos planos a e p são exatamente os pontos da reta AB.

Demonstração:

Sejam o e p dois planos distintos e Ae B dois pontos distintos sobre ambos
os planos. De acordo com o teorema 3.4.5, todos os pontos da reta AB estáo
sobre ambos os planos a e §. Logo os planos a e p têm em comum areta AB.
Suponhamos que existe um ponto C comum aosplanos a e B, mas não incidente
na reta Á8. Aplicando o teorema3.4.9, o plano o e o plano p são coincidentes,
o que é impossível pois os planos a e p são distintos. Portanto os planos a e B
sótêmemcomum arctaAB.

T

Teorema 3.4.11. Se A e B são dois pontos distintos de um espaço tridimensional l,
então todos os pontos sobre a reta AB estão no espaçol.

Demonstração:

Consideremos um espaço tridimensional I definido por um plano Í e por
um ponto P. Sejam A e B dois pontos do espaço tridimensional f. Podemos
ter cinco casos, qualquer outro será análogo a estes:

1. os pontos Á e B pertencem no plano a';

2. um dos pontos coincide com o ponto P;

3. a reta incidente nos pontos Á e B contém o ponto P.

4. os pontos A, B e P são não colineares, e oponto Á pertence ao plano r e

o ponto B não está sobre o plano zr.

5. os pontos A, B e P são não colineares e não estão sobre o plano zr.
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3.4 Espaços projetivos Íinitos

No caso 1 os pontos A e B pertencem ao plano fl', então pelo teorema3.4.S
todos os pontos da reta ÁB pertencem ao plano zr, logo pertencem ao espaço
tridimensional I.

Nos casos 2 e 3, como consequência da definição de espaço tridimensional
I, todos os pontos da reta ÁB estão no espaço tridimensional I.

No caso 4, areÍa PB interseta o plano 7i-num ponto N, por definição. Seja

7 um ponto qualquer da reta Á8. Pretendemos provar que o ponto 7 pertence
ao espaço tridimensional f. Aplicando o axioma 13 aos pontos B, N , P, A e T
existe um ponto J tal que os pontos N, A e "I são colineares e os pontos P, 7
e J são colineares (hg. 3.26). O ponto J da reta /úÁ pertence ao plano pelo

Figura3.26

teorema 3.4.5. O ponto T como é colinear com os pontos P e J pertence ao
espaço tridimensional f por definição. Assim todos os pontos sobre a reta AB
estão no espaço f.

No caso 5, as retas PAe PB intersetam oplano zremdois pontos N e M,por
definição de espaço tridimensional I. Todos os pontos da reta Mlí pertencem
ao plano zr segundo o teorema 3.4.5. Aplicando o axioma 13 aos pontos P, A,
N, B e Mexisteumponto 

^9 comumàsretas AB e MN (f19.3.27).

A Jll

1T

.9 MN

Figura3.27
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Estamos nas condições do caso anterior pois a reta AB tem um ponto na
reta M N ,logo no plano n, então todos os pontos da reta ÁB estão no espaço
tridimensional f. I

Corolário 3.4.12. Se um espaço tridimensionalf é deJinidl por um ponto P e por um
plano r, então o plano r e qualquer reta do espaÇo tridimensionalf , não contida no

plano r, têm exatamente um ponto em comum.

Demonstração:

Seja r uma reta do espaço tridimensional f que não está contida no plano a'.

Sejam Á e B dois pontos da reta r. Podemos ter três casos:

1. se um dos pontos A ou B estiver sobre o plano z', então o plano a' e a reta
r intersetam-se.

2. se a reta r incide no ponto P, por definição de espaço tridimensional f, a

reta r interseta o plano zr'.

3. se nem o ponto Á nem o ponto B estão sobre o plano z'e a reta r não incide
no ponto P estamos no caso 5 da demonstração anterior. Analisando-a
podemos ver que o plano zr e a reta r intersetam-se no ponto .9 aí referido.

Suponhamos, com vista a um absurdo, que a reta r e o plano a'têm dois
pontos S e Q em comum. De acordo com o teorema 3.4.5 todos os pontos da
reta SQ estão contidos no plano zr. Mas a reta r e ^9Q são a mesma pelo teorema
3.4.2, logo a reta r está contida no plano r, o que é absurdo pois supusemos
que a reta r não está sobre o plano zr. Portanto o plano a-e qualquer reta do
espaço tridimensional I, não contida no plano zr, têm exatamente um ponto em
comum. tr

Corolário 3.4.13. Se um espaço tridimensional f é definido por um ponto P e por
um plano r, então o plano r e qualquer outro plano do espaço tridimensional f têm

exatamente uma reta em comum.

Demonstração:

Seja r o plano definido por um ponto Q e por uma reta ú. Seja a um plano
contido no espaço tridimensional I distinto de a'. Existe uma reta s e um ponto
.8, tais que o plano a é o conjunto dos pontos definidos pelas retas que incidem
no pontolB e intersetam a reta s. A reta s incide, no mínimo, em três pontos de
acordo com o axioma 16. Consideremos dois desses pontos, M e S. Construí-
mos as retas MR e Ã,S. Assim existem no plano a pelo menos três retas que
não são concorrentes num mesmo ponto. De acordo com o corolário 3.4.12,
cada uma destas retas tem exatamente um ponto em comum com o plano z-.

Como as três retas não concorrem num mesmo ponto, garantimos a existência
de pelo menos dois pontos A e B do plano rr incidentes no plano zr. Como os

pontos ,4 e B pertencem aos planos a e 7í, aplicando o teorema 3.4.10, estes os
planos têm exatamente a reta AB em comum. tr
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3.4 Espaços projetivos Íinitos

Teorema 3.4."1.4. Se um plano a e uma reta s, não contida no plano a, estão no mesmo

espaço tridimensionall , então o plano a e a reta s tbn exatamente um ponto em comum.

Demonstração:

Consideremos um espaço tridimensional I, determinado por um plano zr e

por um ponto P. Sejam a um plano e s uma reta deste espaço tridimensional
f, tal que a reta s não está contida no plano a. Podemos ter dois casos:

1. a é um plano coincidente com o plano z';

2. a é um plano distinto do plano a'.

Caso 1: se a é um plano coincidente com o plano zr, pelo corolário 3.4.12, o
plano o e a reta s têm exatamente um ponto em comum.

Caso 2: se o é um plano distinto do plano zr, de acordo com o corolário
3.4.13, o plano a e o plano zr têm uma reta r em comum (fig. 3.28).

D
af

Figura 3.28

Seja Á um ponto qualquer do plano a que não pertence à reta r. Temos dois
CASOS:

a. o ponto A pertence à reta s;

b. o ponto Á não pertence à reta s.

Caso a: se o ponto Á pertence à reta s, então o planoo e a reta s têmum
ponto em comum, como queríamos provar.

Caso b: consideremos o plano p definido pela reta s e pelo ponto A. O plano
p interseta o plano 7r numa reta t, de acordo com o corolário 3.4.73. As retas r
e ú são distintas. Ambas pertencem ao plano zr tendo um ponto B em comum,
segundo o teorema 3.4.7. A rcta AB está contida no plano a, de acordo com o
teorema 3.4.5. A reta ü incide no ponto B e está contida no plano B,logoo ponto

s
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B é um ponto do plano B. Assim a reta AB estácontida no plano p,logo as retas
s e AB, de acordo com o teorema 3.4.7 Íêrr. um ponto em comum. Portanto a

reta s interseta o plano a. Não existem mais pontos em comum entre a reta s e

o plano a, pois se existissem a reta estaria contida no plano, pelo teorema3.4.5,
o que contradizia o enunciado. tr

Teorema 3.4.15. Num espaço projetiao de ordem n todas as retas têm exatamente n+'1.

pontos.

Demonstração:

Seja r uma reta qualquer do espaço projetivo. De acordo com o axioma Is,

existeuma reta s com n +1 pontos. Se as retas r e s sãocoincidentes, então a reta
r tem n + 1 pontos. Mas se as retas r e s são distintas, então temos de considerar
dois casos:

1. as retas r e s estão no mesmo plano;

2. as retas r e s são não complanares.

Caso 1: como as retas r e s estão num mesmo plano, segundo o teorema
3.4.7, intercetam-se num ponto P. Sejam St, Sz, ..., S, os restantes pontos da
reta s. De acordo com o axioma 16, sabemos que existe um ponto À1, distinto
do ponto P,nareta r. Também de acordo com o axioma I5,, sabemos que existe
um ponto 7 na reta ,R1^91, distinto dos pontos Ài e ,Sr. Seja i um inteiro tal que
2 < i < n.. Aplicando o axioma 13 aos pontos 51, Â1, T, P e S,, existe um ponto
-rB, comum às retas PRl eTSa (Íig. 3.29).

R,i

P

T

Figura3.29

Conseguimos assim garantir a existência de pontos R1, . . .,,R, distintos do
ponto P. Vejamos que estes pontos são distintos entre si. Consideremos pontos
Ri e Ri , com i / j (fig. 3.30). Suponhamos, com vista a absurdo, que os pontos
Ri e Ri são o mesmo. Então as retas T Ri e T Ri são coincidentes. Os pontos 51

e 57 incidem nas retas T Ri e s, logo, de acordo com os axiomas 11 e 12, as retas
s e TRi são a mesma. O que é absurdo, pois o ponto 7 não incide na reta s.

Portanto, podemos concluir que a reta r tem n + 1 pontos (fig. 3.31).

Êr

s
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3.4 Espaços projetivos finitos

Rt

.s

Figura 3.30

Rt

Figura 3.31

Caso 2: Seja Á um ponto incidente na reta r. Consideremos o plano a de-
finido pela reta s e pelo ponto Á. Seja P um dos n + L pontos da reta s. Como
os pontos Á e P pertencem ao plano o, o lema 3.4.6 garante-nos que arcta AP
está contida no plano a. As retas AP e s são complanares e portanto estão na

situação do caso 1, logo a reta AP tem n + 1 pontos. Seja B um plano definido
pelo ponto P e pela reta r. Os pontos ,4 e P pertencem ao plano B,logo a reta
AP está contida no plano B, de acordo com o lema 3.4.6. As retas AP e r estão
na situação do caso 1., portanto a reta r tem n + L pontos.

Como a reta r foi tomada de forma arbitrária no espaço projetivo de ordem
n, concluímos que todas as retas têm exatamente n + 1 pontos.

n

Espaços projetivos de ordem dois

Os resultados que iremos apresentar dão-nos a conhecer o número exato de
pontos e de retas num espaço projetivo de ordem dois.

Teorema 3.4.16. Num espaço projetiao de ordent n = 2 todos os planos têm exatamente

sete pontos.

sj

s

sn
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Demonstração:

Seja zr um plano definido por um ponto Á e por uma reta r. A reta r incide
em três pontos, sejam dois deles B e C. Podemos construir as retas AB e AC.
A reta AB ternum terceiro ponto D e a reta AC ternum terceiro ponto -E. Apli-
cando o axioma 13 aos pontos A, D, B, E e C existe um ponto f, tal que D, E e
.F' são colineares e .B, C e .t, são colineares, ou seia, o ponto f- é comum às retas
DE e BC. Construímos seguidamente a reta AF. De acordo com o teorema
3.4.1,5, existe um ponto G pertencente à reta ÁF. Mostramos que existem sete

pontos A, B, C, D, E, F e G no plano (fig. 3.32).

Figura 3.32

Suponhamos, com vista a um absurdo, que existe um oitavo ponto 1( dife-
rente dos anteriores. Como os pontos K e A são distintos construímos a reta
Á1{ incidente em ambos. De acordo com o teorema 3.4.7 arcta AK interseta a

reta r num ponto, esse ponto não pode ser B, C ou F, pois, se assim fosse, ob-
teríamos uma contradição com o teorema 3.4.2. Logo tem de existir um quarto
ponto na reta r comum àreta AK, o que é impossível pois cada reta só tem três
pontos. Portanto no plano existem exatamente sete pontos. I

Reparemos que o plano a-descrito na demonstração anterior é um plano
projetivo de ordem dois.

Teorema 3.4.17. Num espaço projetioo de ordem dois, existem exatamente sete retas

em cada plano.

Demonstração:

No teorema 3.4.15 provamos que existem sete pontos num plano do espaço
projetivo de ordem n = 2. Tendo por base a sua demonstração provaremos
que existem sete retas num plano. Foram definidas as retas ABD, AC E, AFG,
B C F e D E F . Nos pontos B e E incide a reta B E. O terceiro ponto desta reta só
pode ser o ponto G, pois o ponto Á e o ponto B são colineares com os restantes
pontos. Raciocínio análogo para a reÍa DCG (fig. 3.33).
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3.4 Espaços projetivos finitos

Figura 3.33

Provaremos seguidamente que não existem mais retas. Suponhamos, com
vista a um absurdo, que existe uma oitava reta s no plano. Esta reta tem três
pontos e como o plano tem os sete pontos já definidos, então os três pontos da
reta s só podem ser três dos sete pontos do plano. Suponhamos, sem perda de
generalidade, que a reta s incide no ponto A. De acordo com o teorema 3.4.7 a

reta s e a reta BC F têm um ponto em comum. Este ponto não pode ser nem B,
nem C e nem r' pois isto levaria a uma contradição com o teorema 3.4.2. Logo
tem de existir um quarto ponto na reta r, comum à reta s, o que é impossível
pois cada reta só tem três pontos. Portanto no plano existem exatamente sete

retas. tr
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Teorema 3.4.18. Num espaço projetiao de ordem dois, o número de pontos num espaÇo

tridimensional I é exatamente quinze.

Demonstração:

Por definição, o cspaÇo tridimensional f é definido por um plano a'e por
um ponto P. No teorema3.4.15 provámos que um plano tem exatamente sete

pontos. Têndo por base a sua demonstração consideremos no plano zi' os pontos
A, B, C, D, E, F e G. Em cada um destes pontos eno ponto P incide uma reta.
Cada uma destas retas tem três pontos. Sejam H, K, J, L, M, l{ e O os pontos
incidentes respetivamente nas retas PB, PA, PC, PD, PE, PF e PG distin-
tos dos já referidos. Estes pontos pertencem ao espaço f pelo teorema 3.4.1,1.

Assim existem 15 pontos. Suponhamos, com vista a um absurdo, que existem
mais de quinze pontos, sendo o ponto Q um ponto distinto dos já mencionados.
No ponto P e no ponto Q incide areta PQ, que interseta o plano 7i'num ponto,
segundo o teorema 3.4.14. Este ponto tem de ser um dos pontos já definidos
pois o plano zr não tem mais pontos. No ponto P e nos pontos do plano zr já
incide uma reta, logo a reta PQ tem de ser uma das retas definidas antcrior-
mente, caso contrário chegamos a uma contradição com o teorema 3.4.2. Assim
o ponto Q tem de ser um dos pontos anteriores, o que é absurdo, pois o ponto

Q é um ponto distinto. Portanto existem exatamente quinze pontos. X

Teorema 3.4.19. Num espaço projetiao de ordem n = 2, o número de retas incidentes

num espaÇo tridimensional f é exatamente trinta e cinco.

Demonstração:

No teorema anterior demonstrámos que num espaço tridimensional f exis-
tem 15 pontos. Para provarmos que existem trinta e cinco retas utilizaremos as

mesmas notações da demonstração anterior. No ponto A e em cada um dos res-
tantes catotze pontos incide uma reta. Construímos anteriormente as seguintes
retas incidentes no ponto A: ABD, AC E, AFG e AK P (fig. 3.3a).

No ponto Á e no ponto 1{ incide uma reta, que tem três pontos. Iremos
seguidamente encontrar o terceiro ponto da reta AH. Seja o o plano definido
pelo ponto P e pela reta AB. Os pontos D, H, K e L são pontos do plano rr,

porque o ponto D é um ponto da reta ÁB e os pontos H, K e -L são pontos,
respetivamente, das Íetas BP, AP e DP. Como os pontos A e H são pontos
do plano o, então a reta AH está contida no plano o, de acordo com o teorema
3.4.5. Segundo o teorem a 3.4.7, a reta AH tem um ponto em comum com qual-
quer reta do plano <r, em particular com a reta P D . Esse ponto não pode ser o
ponto P, pois areta AH interseta arcta AP no ponto Á. Também não pode ser
o ponto D porque arcta AH interseta areÍa AD no ponto A. Logo areta AH só

pode intersetar a reta PD no ponto -L. Assim construímos a reta AH L. Seja § o
plano definido pelo ponto P e pela reta AC. Analogamente ao que vimos para
o plano o verificamos que os pontos A, C, E, J , M e P são pontos do plano B
e que a reta AJ interseta a reta PE no ponto M. S$a ô o plano definido pelo
ponto P e pela reta AF. Analogamente ao que vimos para o plano a verifica-
mos que os pontos A, F, G, N, O e P são pontos do plano d e que a reta ÁN
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P

Figura 3.34

interseta a reta G P no ponto O. Temos, então a reta Ál[O. Construímos todas

as retas incidentes no ponto A. Pot raciocínios análogos ao que fizemos para

encontrar aS retas inCidentes nO Ponto Á, encontramos aS retas incidentes nos

pontos: B, C, D, E, F, G, H, K, J, L, M, N e O. Assim as trinta e cinco retas são:

ABD, ACE,AFG, AHL, AKP, AJM, ANO, BCF, BEG, BHP, BKL, BJN,
BMO, CDG, CHN, CKM, CJP, CLO, DEF, DHK, DJO, DLP, DMN,
EHO, EKJ, ELN, EMP, FHJ, FKO, FLM, FNP, GHM, GKN, GJL C

GPO. Suponhamos, com vista a um absurdo, que existem mais de 35 retas.

Seja s uma reta distinta das anteriores. A reta s tem três pontos, que só podem

ser três dos quinze pontos já definidos, caso contrário chegamos a uma contra-

dição com o teorema 3.4.17. Suponhamos, sem perda de generalidade, que a

reta s incide no ponto Á. No ponto Á e em cada um dos outros Pontos do es-

paço tridimensional f incide já uma reta, logo a reta .e tem de ser uma das retas

consideradas anteriormente, caso contrário chegamos a uma contradição com

o teorema 3.4.2. Mas isto é impossível, pois a reta s é distinta das anteriores'

Provamos que existem exatamente trinta e cinco retas. X
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Capítulo 4

Planos Afins Finitos

Sejan>Lumnatural.

Um conjunto de pontos que satisfaça o seguinte sistema de axiomas chama-
se plano afim de ordem n.

Axiomas:

Axioma J1: Existem pelo menos quatro pontos não colineares três a três.

Axioma J2: Existe pelo menos uma reta incidente com exatamente n pontos.

Axioma ]3: Dados dois pontos distintos, existe exatamente uma reta incidente
em ambos.

Axioma Ja: Dados uma reta r e um ponto P não incidente em r, existe exata-
mente uma reta incidente no ponto P paralela à reta r.

Comparando o sistema axiomático do plano afim de ordem n com o do
plano projetivo de ordem n verificamos que existem dois axiomas que diferem,
o segundo e o quarto. No plano afim de ordem n existe pelo menos uma reta
incidente em exatamente n pontos, enquanto que no plano projetivo de ordem
n existe pelo menos uma reta incidente em exatamente n + 1 pontos. No plano
afim de ordem rz, dados uma reta r e um ponto P não incidente em r, existe exa-
tamente uma reta incidente no ponto P paralela à reta r e no plano projetivo de
ordem n, dadas duas retas distintas existe pelo menos um ponto incidente com
ambas.

O plano afim de ordem n e o plano projetivo de ordem n também diferem
relativamente ao princípio da dualidade, uma vez que o primeiro não o satisfaz
e o segundo sim, como foi demonstrado anteriormente.

Apresentamos seguidamente duas razões que justificam o facto de o plano
afim de ordem n. não verificar o princípio da dualidade.

Primeira razão: se considerássemos o dual do axioma J2 existiria pelo menos
um ponto incidente em exatamente n retas. Isto contradiria o teorema 4.0.21,
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demonstrado mais à frente, que afirma que cada ponto incide em exatamente
n + 1 retas.

Segunda razão: observemos que se o dual do axioma |3 fosse verdadeiro,
dadas duas retas distintas existiria exatamente um ponto incidente em am-
bas. De acordo com o axioma |2, existe pelo menos uma reta r com n pontos
Pr, Pz, . . . , Pn.Aplicando o axioma |1, existe um ponto Q não incidente na reta
r $ry.a.1.

P1 P2 Pnr

h
Figura 4.1

Segundo o axioma Ja, existe exatamente uma reta s incidente no ponto Q e
que não interseta r. Assim as retas r e s não têm nenhum ponto em comum, o
que contradiz o dual do axioma J3.

Lema 4.0.20. Duas retas paralelas a uma terceira são paralelas entre si.

Demonstração:

Sejam r e s duas retas paralelas. Suponhamos, com vista a um absurdo, que
existe uma reta ú que interseta a reta s, num ponto 7 e não interseta a reta r (fig.
4.2).

r s t

T

Figxa4.2

Assim pelo ponto 7 passam duas retas paralelas à reta r o que contradiz o

axioma Ja.

Portanto as três retas são paralelas entre si. tr

Teorema 4.0.21. Num plano aJim de lrdem n, cada ponto incide em exatamente n + L

retas.

Demonstração:

Seja P um ponto do plano. De acordo com o axioma J2, existe pelo menos
uma reta r incidente com exatamente n pontos Pt, P2, . . ., Pn. Poderemos con-
siderar dois casos distintos:

1. o ponto P não incide na reta r;
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2. o ponto P incide na reta r.

Caso 1: se o ponto P não incide na reta r, segundo o axioma ]a existe exata-
mente uma reta s incidente no ponto P e paralela à reta r. No ponto P e em cada
um dos pontos Pt, Pz, . . ., Pn incidem as retas 1L,r,2, .. . / rn respetivamente, de
acordo com o axioma ]3. Estas retas são distintas, pois os pontos Pt, Pz, . . ., Pn

são distintos (fig. a.3).

r7 rn

s

Figura 4.3

Assim P incide em r, + 1 retas. Suponhamos, com vista a um absurdo, que
no ponto P incidem pelo menos n +2retas. Seja ú uma reta incidente no ponto
P diferente das já consideradas. Como as retas r e s são paralelas, de acordo
com o axioma Jq,ateta ú temde intersetara reta r. Assim aretar e a reta ú

têm um ponto em comum, e este ponto é diferente de todos os outros pontos
da reta r porque as retas são todas diferentes. Assim a reta r tem n + 1 pontos,
o que não pode acontecer por definição da reta r. Portanto no ponto P incidem
exatamenterr+1retas.

Caso 2: se o ponto P incide em r, vamos assumir que os pontos P e P1

são coincidentes. De acordo com o axioma 11 garantimos a existência de um
ponto Q não incidente na reta r. No ponto Q incide uma reta s paralela à reta
r, aplicando o axioma Ja. Segundo o axioma )3, existe exatamente uma reta 11

incidente nos pontos P e Q.Aplicando o axioma Ja à reta 11 e ao ponto P2 existe
uma reta 12 incidente no ponto P2 e paralela à reta 11. A reta 12 interseta a reta
§, pois caso contrário existiriam duas retas paralelas à reta 12 (r1 e s), o que
contradizia o axioma Ja. A reta rz rrão incide no ponto Q, pois é um ponto da
reta 11 . O ponto de interseção da reta 12 coÍl a reta s é um ponto Q2 (hg. a.q.

P1 P P2 P3 Pn

r

r

s

r1 r2

Figura 4.4
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Consideremos o ponto P3 e a reta 11. De acordo com o axioma Ja existe
exatamente uma reta 13 incidente no ponto P3 e paralela à reta 11. Como a retar2
é paralela à reta 11, pelo lema 4.0.20 a reta 13 também é paralela à retarz. As retas

13 e s intersetam-se num ponto, Çs (pela razão que indicamos anteriormente).
De modo análogo construímos os restantes n pontos sobre a reta s. Segundo o
axioma 13, no ponto P, no ponto Q e em cada ponto 8t com i = 2, .. ., n incide
exatamente uma reta. Assim no ponto P incidem r, + 1 retas. Vamos provar
que existem exatamente n + 1 retas. Suponhamos/ com vista a um absurdo, que
no ponto P incide uma reta ú diferente de r, PQ, PQz, ..., PQn. As retas ú e

s intersetam-se no ponto 7 ( a reta ú não pode ser paralela á reta s, pois pelo
axioma J4, existe exatamente uma reta paralela à reta s que é a reta r) (fig. a.5).

P

rj

r

t
T s

Figura 4.5

O ponto 7 é diferente dos pontos Q, Qz, . . ., Qn, porque se não o fosse, a

reta ú coincidiria com uma das retas PQ, PQz, ..., PQn.Como o ponto 7 não
incide errr 11, então, pelo axioma |4, existe uma reta u que incide no ponto 7 e
é paralela a 11. Pelo lema 4.0.20 a reta u é paralela à 11,...,rr. Areta u tem de
intersetar a reta r, pois já existe uma reta paralela r que passa pelo ponto ? (reta

s); pelo axioma |a, não podem existir mais retas. Mas isso significa que a reta r
tem mais um ponto, uma vez que a reta u é paralela a todas as outras retas. A
reta r não pode ter mais pontos, pois tem exatamente z pontos, logo chegamos
a uma contradição. Assim no ponto P incidem n + 1 retas. tr

Teorema 4.0.22. Num plano aJim de lrdem n, cada reta contém exatamente n pontos.

Demonstração:

Seja r uma reta dada. De acordo com o axioma |1 garantimos a existência de
um ponto Q não incidente em r. Segundo o teorema 4.0.21., o ponto Q incide
em exatamente n + 1 retas distintas r1., rz, . . ., rn+1.. Como o ponto Q não incide
na reta r, pelo axioma J4, existe exatamente uma reta que incide em Q e não
interseta a reta r, portanto esta reta terá de ser uma das retas anteriormente
mencionadas. Sem perda de generalidade suponhamos que rn+7 é paralela à
reta r. Assim as retas r1., rz, .. ., r, intersetam a reta r nos pontos P1, P2, . . ., Pn,

respetivamente. Provaremos seguidamente que os pontos são todos distintos.
Suponhamos, com vista a um absurdo, que os pontos Pi e Pi são o mesmo,

com i, / j. De acordo com o axioma ]3 existe exatamente uma reta incidente
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simultaneamente em Pt, Pi e Q, assim as retas r.; ê ri são a mesma, o que é
absurdo. Logo os pontos Pt, Pz,. . . , Pn são distintos (fig. a.6).

r

rn

Figara 4.6

Provaremos agora que existem exatamente n pontos na reta r. Suponhamos,
com vista a um absurdo, que na reta r incidem n + 1 pontos, P1, P2, ..., Pn+l.
No ponto Q e em Pr, P2, ..., Pn incidem as retas Í'1, ".2, . . ., rn. Pelo axioma |3,
no ponto Q e no ponto Pr*i incide exatamente uma reta, rr*2. Assim no ponto
Q incidem n + 2retas, o que contradiz o teorema 4.0.27.

Concluímos assim que cada reta contém exatamente n pontos. n

Teorema 4.0.23. Num plano afim de ordem n, cada reta admite exatamente n - 1, retas

paralelas.

Demonstração:

Seja r uma reta dada. De acordo com o teorema 4.0.27 na reta r incidem
n pontos distintos. Segundo o teorema 4.0.22no ponto P incidem exatamente
r, + 1 retas. Seja ú uma reta incidente em P, distinta da reta r. Na reta ú existem
n - 1 pontos distintos de P, pelo teorema a.0.22 (hg. a.7).

Pnt

Figna4.7

De acordo com o axioma Jn, sê um ponto não incide na reta r então existe
exatamente uma reta que incide nesse ponto e é paralela à reta r. Como a reta

r

t
P

P1

r

113



ú tem n - 1 pontos não incidentes em r (caso contrário, as retas ú e r seriam
a mesma pelo axioma J3) existem n - 1 retas incidentes nesses n - 1 pontos,
Pt , P2, . . . , Pn-7, e que não intersetam r. Provemos que existem exatamente n - 1

retas paralelas à reta r. Suponhamos, com vista a um absurdo, que existe outra
reta s diferente das anteriores e paralela à reta r. A reta s tem de intersetar
a reta t, caso contrário a reta s é paralela a duas retas que passam pelo ponto
P (as retas r e ú) o que contradiz o axiomaJa. Como a reta s interseta a reta ú

num ponto, a reta t tem outro ponto distinto dos anteriores/ caso contrário nos
pontos Pt, Pz, . .. , Pn-7 incidiriam duas retas paralelas à reta r, o que contradiz o

axioma Ja. Mas a reta ú não pode ter mais pontos, pelo teorema4.0.22. Portanto
existem exatamente n - 1 retas paralelas à reta r. tr

Teorema 4.0.24. Numplano afim de ordemn, existem exatamente n2 pontos e n2 + n
retas.

Demonstração:

Comecemos por mostrar que existem exatamente n2 pontos. Seja P um
ponto dado. De acordo com o teorema 4.0.21, no ponto P incidem n + 1 retas,

17, r'2, ..., rn+t. Mas em cada reta incidem n pontos, de acordo com o teorema
 .O.»,assim em todas as retas ri com i = 7, . . ., n + 1 incidem n - 1 pontos dife-
rentes do ponto P. Vejamos que não existem mais pontos para além destes. Por

qualquer ponto do plano diferente do ponto P e pelo ponto P tem de incidir
uma reta, pelo axioma J3, logo esse ponto tem de pertencer a pelo menos uma
das n + 1 retas que incidem no ponto P, de acordo com o teorema 4.0.27. Logo
o número total de pontos é

(n+7)(n 7) +1= n2.

Mostremos que existem exatamente n2 + n retas. Seja r uma reta dada. De

acordo com o teorema 4.0.22, na reta r incidem n pontos, Pt, P2, . . ., Pn. Em

cada um destes pontos incidem n retas diferentes da reta r pelo teorema 4.0.21.

Existem exatamente n - 1 retas paralelas à reta r, aplicando o teorema 4.0.23.

Assim o número total de retas é

nxn+7+(n_ 1)=n2+n.

Exemplo 4.0.25. Um possível modelo para o plano afim de ordem dois.

De acordo com o axioma [, existem quatro pontos P, Q, R e S não colinea-
res três a três. Aplicando o axiomaJ3 construímos as retas PQ,8S, SR, RP, PS
e .EQ. Como o plano é de ordem dois, pelo teorema 4.0.22, cada reta tem exata-

mente dois pontos e de acordo com o teorema 4.0.24 existem exatamente quatro
pontos e seis retas. Estes pontos e estas retas foram definidas anteriormente.

Um modelo ilustrativo do que acabamos de dizer poderá ser o da figura 4.8.
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Figura 4.8: modelo 1

Podemos obter um plano afim de ordem dois a partir de um plano projetivo
de ordem dois se neste for apagada uma reta e os seus pontos. Vejamos o mo-
delo do plano projetivo de ordem dois apresentado na secção 3.1 do capítulo 3
(hs. a.e).

G C
F

Figura 4.9: modelo 2

Se neste modelo apagarÍnos, sem perda de generalidade, a reta D-EI'vamos
obter outro exemplo de um modelo de um plano afim de ordem dois como
podemos ver na figura 4.10.

G

Figura 4.10: modelo 3

Observemos que tanto o modelo 1 como o modelo 3, que são exemplos de
planos afins de ordem dois, aparecem também como exemplos de modelos que
satisfazem a axiomática da geometria dos quatro ponto pontos, que foi tratada
na secção 1.1 do capítulo L. Provámos também nessa secção que estes modelos
são isomorfos.
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Exemplo 4.0.26. Um possível modelo para o plano afim de ordem três.

Existe uma reta o incidente em três pontos P, Q e 7, de acordo com o axioma

J2. A reta a tem exatamente duas retas paralelasb e c, segundo o teorema 4.0.23.

Aplicando o teorema 4.0.22, a reta à tem exatamente três pontos R, S e U e a reta

c também tem três pontos X, V e Z. De acordo com o axioma J2 construímos
a reta PR. Esta reta não pode ser paralela à reta c, de acordo com o teorema
4.0.23, pois já existem duas retas paralelas à reta c (o e ó). Logo a reta PR e a

reta c intersetam-se num dos pontos X ouV ou Z. Como estes pontos estão em
igualdade de circunstâncias podemos escolher, sem perda de generalidade, o
ponto X. Construímos a reta PRX. Analogamente construímos a reta PS que
também interseta a reta c. Esta interseção não pode ser o ponto X, pois as retas

P S e P RX seriam a mesma. Assim as retas intersetam-se ou no ponto V ou no
ponto Z, serr. perda de generalidade escolhemos o ponto Z . Construimos a reta
P S Z . Por razões análogas à anterior definimos a reta PU V . Pelo ponto P iá não
podem passar mais retas, segundo o teorema 4.0.21,. Por argumentos análogos
aos anteriores construímos as retas incidentes no ponto Q, QRZ, QSV e QUX
e as retas incidentes no ponto T,TRV,TSX eTUZ. Temos definidos os nove

pontos e as doze retas PQT, PRX, PSZ, PVU, RSU, RTV, QRZ, QSV,QUX,
TSX,TtIZ,VXZ referidos no teorema 4.0.24. Um modelo ilustrativo do que
acabamos de dizer poderá ser o da figura 4.11:

a

b

zc

Figura 4.11

Reparemos que este modelo proposto já nos apareceu no capítulo 1 noutra
axiomática, a geometria dos nove pontos e doze retas. Também o encontrámos
no plano projetivo de ordem três, quando a este último retiramos uma reta e

seus pontos.
Isto não acontece por acaso, vamos terminar o capífulo mostrando uma re-

lação entre um plano afim e um plano projetivo. Consideremos a configuração
de um plano projetivo de ordem n. Nesta configuração existem n2 +n+l pontos

e nz + n + 1 retas de acordo com o teorema 3.1.11. Se nesta configuração retirar-
mos uma reta e os respetivos pontos vamos ficar com nz + n retas e n2 pontos,

pois cada reta tem n + 1 pontos segundo o teorema 3.1.9. Este é o número de
retas e pontos de um plano afim. Vamos ver porque isto acontece no teorema

seguinte.
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Teorema 4.0.27. Seja t uma reta de um plano projetiao r de ordem n. Seja a a confi-
guração que se obtém retirando a reta t e todos os seus pontos. Então a é um plano afim
de ordem n.

Para demonstrar o teorema vamos verificar que ao retirar a reta ú e os respe-
tivos pontos, os quatro axiomas dos planos afins são satisfeitos. Para fazer esta

verificação utilizaremos todos os axiomas e resultados da secção 3.1 do capítulo
J.

Demonstração:

Axioma J1: Existem pelo menos quatro pontos não colineares três a três.

Num plano projetivo zr de ordem rr, segundo o axioma H1, podemos tomar
quatro pontos não colineares três a três. Podemos ter três casos distintos:

1. nenhum dos quatro pontos pertence à reta Í;

2. um dos pontos pertence à reta ú;

3. dois dos pontos pertencem à reta ú.

Caso 1: se nenhum dos quatro pontos pertencer à reta ú e esta for retirada
assim como os seus pontos, então os quatro pontos não colineares três a três
pertencem à configuração a e o axioma é verificado.

Caso 2: existem três pontos não colineares A, B e C não incidentes na reta
ú e precisamos de encontrar um quarto ponto D também não incidente na reta
ú e que não esteja sobre nenhuma das retas AB, AC e BC. Segundo o axioma
H2 podemos considerar dois pontos E e F distintos incidentes na reta ú. De
acordo com o axioma H3, construímos as retas BE e CF, que são distintas,
caso contrário os pontos B e C pertenceriam à reta ú, o que é falso por hipótese.
Estas retas intersetam-se num ponto D, segundo o teorema 3.1.3.

D

C

E

Figxa4.72

O ponto D não pertence à reta t, pois caso contrário as retas B E, C F e ú se-

riam a mesma, o que, como vimos, não pode acontecer. O ponto D também não
pertence à reta BC, pois caso contrário as retas BC, C F e B.E seriam a mesma.
Por razão análoga o ponto D não pertence às retas AB e AC. Provamos assim
que existem os pontos A, B, C e D de modo que o axioma J1 seja verificado.

Caso 3: existem dois pontos distintos A e B não incidentes na reta ú. Têmos
de encontrar outros dois pontos C e D distintos, não pertencentes à reta ú de
modo que os quatro pontos A, B, C e D sejam não colineares três a três. Como

t
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aÍetat tem n + l pontos en > l podemosconsideraremú ospontos E, F eG
distintos. De acordo com o axioma H: construímos as retas AF, AG, BE e BF,
que facilmente verificamos serem distintas. As retas AF e B E têm um ponto C
em comum e as retas AG e BF têm um ponto D em comum de acordo com o
teorema 3.1.3 (fig. 4.13).

D

Figura 4.13

O ponto C não pode pertencer à reta AB, pois caso contrário as retas Á8,
AF e B E seriam a mesma. O ponto C também não pode pertencer à reta ú, pois
caso contrário as retas AF, BE e ú seriam a mesma. Analogamente vemos que
o ponto C não pertence nem à reta AG nem à reta BF. Por seu lado o ponto D
não pode pertencer às retas AB, t, AF e BE por razões análogas às indicadas
anteriormente. Portanto A, B, C e D são quatro pontos não colineares três a
três e o axioma |1 é verificado.

Axioma |2: Existe pelo menos uma reta incidente com exatamente n pontos.

Seja s uma reta distinta de ú. De acordo com o teorema 3.7.9 a reta s in-
cide em exatamente n + 1 pontos. As retas s e ú intersetam-se num ponto r? de
acordo com o teorema 3.1.3. Se retirarmos a reta t e os seus pontos, o ponto
R, que pertence a ambas as retas, também é retirado. Assim a reta s fica com n
pontos. Verificamos que existe uma reta com exatamente n pontos, sendo assim
o axioma J2 é satisfeito.

Axioma j3: Dados dois pontos distintos, existe exatamente uma reta inci-
dente em ambos.

Sejam A e B dois pontos distintos não incidentes na reta ú, de acordo com o

teorema 3.1.5. A reta AB não foi retirada ao plano r,logo a reta ainda pertence
ao plano a. O axioma J3 é satisfeito.

Axioma Ja: Dados uma reta r e um ponto P não incidente em r, existe exa-

tamente uma reta incidente no ponto P paralela à reta r.

Sejam r uma reta distinta da reta ú e P um ponto não incidente nem na reta
r nem na reta ú. A reta ú e a reta r intersetam-se num ponto Ç, de acordo com
o teorema 3.1.3. Aplicando o axioma FI3, construímos a reta s incidente nos
pontos P e Q. A reta s tem em comum com as retas anteriores o ponto Q $ig.
4.74).

Se retirarmos a reta ú e os respetivos pontos estamos a retirar o ponto Q,rnas

t
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t

Figura 4.14

este é o único ponto em comum das retas r e s, portanto as retas r e s não se

intersetam na configuração a, isto é, são paralelas. Assim dados um ponto P
e uma reta r não incidente no ponto P, existe uma reta s incidente no ponto P
paralela à reta r. Vamos provar que esta reta é única. Suponhamos, com vista
a um absurdo, que existe uma reta u diferente da reta s também paralela à reta
r e incidente no ponto P. No plano projetivo z-de onde partimos, a reta u, de
acordo com o teorema 3.1.3, interseta a reta r num ponto. Podemos ter dois
casos distintos:

1. a reta u interseta as retas ú e r no ponto Q;

2. areta uinterseta aretat numponto M ea reta rnumponto l[, ambos
distintos do ponto Q.

Caso 1: se a reta u interseta as retas ú e r no ponto Q, então de acordo com o
axioma H3 as retas s e u são a mesma, o que é absurdo pois supusemos que as

retas são distintas.

Caso 2: se a reta u interseta aretat num ponto M e a reta r num ponto.ly',
distintos do ponto Q, então se retirarmos a reta ú e os respetivos pontos areta u
continua a intersetar a reta r no ponto Il, logo as retas u e r náo são paralelas,
o que é absurdo.

Portanto dados uma reta r e um ponto P não incidente em r, existe exata-
mente uma reta incidente no ponto P paralela à reta r. O axioma Ja é verificado.
tr
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