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A B S T R A C T   

Long-term quantification of solar energy variables at ground level is not easily achievable in many locations. In 
order to overcome this limitation, use of artificial intelligence such as the application of machine learning 
methods is commonly used for solar irradiance prediction. 

In this context, this study proposes the implementation of artificial neural networks as deep learning and the 
XGBoost algorithm as a machine learning method for modeling the hourly global solar radiation for a humid 
climate such as the Rabat region. For this purpose, hourly meteorological data from the city of Rabat in Morocco 
are chosen in order of importance using the random forests method, for training and testing the models, namely 
date and time, sunshine duration, temperature, relative humidity, wind speed/direction and pressure. Subse
quently, models are selected after the validation phase for testing, whose performance is evaluated using relevant 
statistical indicators. As a result, we retain 2 ANN and 1 XGBoost models which are eventually very close in terms 
of performance with a coefficient of determination value equal to 98% and 97% respectively. However, statistical 
indicators have proven to be effective in assessing the accuracy and fidelity of each model. 

Ultimately, the intent of the modeling in terms of accuracy, simplicity or fidelity is a crucial factor in the 
selection of the model algorithm to adopt.   

1. Introduction 

In light of global climate change, the growing concern and interest in 
energy conservation and environmental protection is becoming an op
portunity for countries and communities to develop their energetic 
infrastructure and accelerate their energy transition from near total 
dependence on fossil fuels to greater use of the alternatives low carbon 
renewable energy sources. Given its inexhaustibility, environmental 
sustainability, and ease of access at low cost in vast regions of the globe, 
solar energy is at the core of the consortium of energy generation 
technologies. This makes it the most abundant renewable energy 
resource in the world. Morocco is granting a particular interest for the 
clean energy production sector with an increasing installed capacity 
from renewable sources which is presently about 4 GW, including 750 
MW from solar energy. This has allowed reaching a contribution of 37% 
of renewable energies in the total installed power during the year 2020 

[1]. 
Morocco benefits from a huge solar energy potential as shown in 

Fig. 1 which illustrates the frequency distribution of the global hori
zontal radiation having an average of 5.54 kWh/m2 [2]. 

It is commonly accepted that the solar energy source is permanent 
and abundant in nature and does not need to be replenished. But the 
distribution of solar irradiation intensity varies significantly in each area 
of the globe [3]. Therefore, the knowledge of the availability of solar 
radiation on horizontal and inclined planes as well as the consideration 
of the solar radiation mapping of an area remain indispensable, not only 
for the implementation of conversion systems, but also for the analysis of 
the solar potential that intrigues researchers in several fields. Practi
cally, various types of tools or devices are usually used for solar radia
tion measurement depending on the requirement such as solar-meters, 
pyranometers and pyrheliometers. However, the availability of these 
tools remains limited due to their cost and the need for regular main
tenance, whether corrective or preventive, not to mention the potential 
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missing data and low accuracy of some of them. 
To overcome such limitations, modeling remains among the best 

solutions. The types of modeling appropriate to this context can be 
classified into two sections. The first concerns physics-based models, 
including satellite image-based models, numerical weather prediction, 
numerical regression, and sky imagery. The second section includes 
statistical artificial intelligence methods, i.e., machine learning (ML) 
algorithms. In fact, ML-based artificial intelligence approaches are 
widely used and are recognized for their effectiveness in solving com
plex environmental and energy engineering problems [4–6]. Depending 
on the objectives, they can be used in different applications such as 
classification, clustering and regression [7]. Indeed, many ML tech
niques have been used for global solar radiation prediction. Among 
these models, ANN algorithms are the most frequently used [8]. For 
instance, Koca et al. have worked on solar radiation prediction for about 
seven cities in Turkey using an ANN. To this end, they used various 
activation functions in the hidden layer of the ANN model and then 
chosen the most appropriate models for the selected regions [9]. On the 
other hand, Geetha et al. revealed, in their study conducted in India, that 
the ANN model they developed by LM algorithm, can be used to effi
ciently estimate the hourly solar radiation in a shorter time and with 
minimum error [4]. 

Furthermore, among the ML methods used in practice, ensemble 
methods such as bagging, boosting, and random forest are known to be 
highly effective, especially for tabular data such as weather data. 
Gradient tree boosting is a technique that is proving successful in many 
applications. Tree boosting has been shown to give top results on many 
Benchmarks. In its advanced version, EXtreme Gradient Boosting 
(XGBoost) is a scalable machine learning system for tree boosting. It has 
been widely recognized in a variety of data exploration challenges [8, 
10]. Although it is widely used in many other fields, the application of 
the model remains limited in solar radiation prediction compared to 
other learning methods, especially for studies conducted in Morocco. 

The objective of this study is to investigate the feasibility and 
applicability of using ANNs as deep learning along with the XGBoost 
algorithm to model the nonlinear relationship between solar radiation 
and other meteorological parameters. 

2. Material and methods 

2.1. Methodology 

In this first section, we explore the various data measurement devices 
as well as the characteristics of the study site. After that, the program 
inputs will be selected in order of importance using the random forest 
method for the selection of each input weather parameter based on its 
relevance level. This method plays the same role as the genetic algo
rithm (GA) or the ant colony optimization (ACO) employed in Ref. [5]. 
In order to evaluate the consistency of the ML models with the target 
quantity, two ML models: ANN and XGBoost have been trained and 
validated. As a result, the best-performing models will be selected and 
then submitted to the testing phase with random data of the year 2021. 
The main steps of the methodology adopted are illustrated in the flow
chart of Fig. 2. 

2.2. Study area and measurement station 

The meteorological parameters used in this study are measured in 
solar energy platform of our laboratory in the city of Rabat, capital of 
Morocco. This location is set at 33◦ 979106 latitude, - 06◦827483 
longitude, and 89 m altitude. It is also characterized by a Mediterranean 
climate, which refers to a warm temperate climate with dry summer 
according to the Köppen Geiger classification [11]. The input data for 
our model come from a very good meteorological station allowing 
real-time measurements of several meteorological parameters thanks to 
its high quality and accurate sensors. The data collection refers to the 
period from January 1, 2020 to December 31, 2020 with a time step of 
30 min. 

The main equipment and their technical characteristics allowing the 
measurement of the various climate parameters are listed in Table 1. 

2.3. Variables dependency and data selection 

In many cases, especially those of high dimension, the choice of the 
number and nature of predictors is of crucial importance for predictive 
modeling. Since the issue consists of linking the predictable output to a 
set of inputs, the use of inappropriate or inadequate number of inputs 
may lead to weak modeling and results. However, in most cases, the 
inputs that should be selected and used in the modeling are not so 
obvious. There is often some uncertainty for which inputs should be 
used. This is the reason why, in the framework of this study, we started 
by evaluating first the effect of each potential input on the predictable 

Nomenclature 

ANN Artificial Neural Network 
XGBoost EXtreme Gradient Boosting 
GSR Global Solar Radiation (W.m− 2) 
FFNN Feed Forward Neural Network 
LM Levenberg-Marquardt 
BP Back Propagation 
M Month 
H Hour 
S Sunshine duration 
RH Relative Humidity (%) 
Wd Wind direction (◦) 

Ws Wind speed (m.s− 1) 
T Air Temperature (◦C) 
ICE Individual Conditional Expectation 
PDP Partial Dependence Plot 
n Number of observations 
Xobs (i) The i-th observed value of GSR 
Xsim (i) The i-th simulated value of GSR 
RMSE Root Mean Square Error 
MSE Mean Square Error 
MAE Mean Absolute Error 
R2 Coefficient of determination 
NS Nash-Sutcliffe criterion 
RVE Relative Volume Error criterion  

Fig. 1. Frequency distribution of GHI (kWh/m2) on the Moroccan territory.  
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output by using the Random-Forest method. This algorithm evaluates 
the relevance of each predictor by building a hierarchy of all potential 
inputs with respect to the predictable output [12]. This index allows us 
to rank the variables from the most important to the least important. The 
evaluation was carried out on 9 predictor parameters. According to the 
percentage of importance obtained by this method, 8 predictor variables 
were retained as shown in the histogram (Fig. 3), while precipitation has 
been excluded as having a rather negligible percentage. 

Furthermore, we evaluated the interaction and influence of the 
predictor’s inputs on our target response which is the GSR following an 
approach based on the Individual Conditional Expectation (ICE) and 
Partial Dependence Plots (PDP). In fact, PDP are used to implement the 
marginal contribution of different characteristics on the output. They 
are closely related to the ICE graphs as well. The difference is that ICE 
graphs show changes in the prediction for each instance of the data, 
resulting in one line per instance for ICEs, as opposed to an overall line in 
PDP [13]. To simplify, a PDP can be expressed as the average of the lines 
in an ICE graph. The main purpose of using these graphs is to show how 
a change in a feature can concretely affect a given output. Fig. 4 gathers 
the ICE and PDP for the first 3 parameters ranked as most important by 
the random forest method, namely sunshine duration, hour and relative 
humidity. 

Fig. 4 a shows that GSR, represented by its ICE graph, increases from 
100 to 270 W/m2 with increasing insolation duration from 0 to 90 min. 
On the contrary, GSR in Fig. 4 c, shows a slight decrease which does not 
exceed 10 W/m2, when the relative humidity goes from 12% to 100%. 
Fig. 4 b shows that GSR increases from 6 a.m. reaching its maximum 
value at 12 p.m., then decreases and reaches its minimum value around 
8 p.m. The time of day has an important effect on the value of the ra
diation, and it varies from 20 to 450 W/m2 in the ICE graphs. 

Based on the previous arguments, the ultimate selection of input 
variables is composed of relative humidity, sunshine duration, 

temperature, pressure, wind speed/direction, month and time. Table 2 
groups the different statistical factors (Minimum, Maximum and 
Average) related to the input and output parameters. 

3. Machine learning models for GSR modeling 

3.1. ANN theory 

ANN derived from artificial intelligence concepts, are commonly 
used to solve complex problems that are difficult to model in analytic 
ways. It is indeed a concept inspired analogously from the efficient 
behavior of the human brain. As in the brain, a set of identical artificial 
neurons are connected in series to each other to form the whole network. 
Networks are distinguished according to different criteria, either by 
their architecture with the number of layers used, or by their complexity 
including the number of neurons, but also by the objective aim for 
optimization, supervised learning, etc [14]. 

In a multilayer ANN, the neurons are distributed in different layers: 
an input layer, one or more hidden layers and an output layer. The first 
input layer receives the collected data and transfers the input signal to 
the next layer thanks to its ability to communicate with the other neu
rons called neuron weight wi,j. Also, with each neuron not belonging to 
the input layer, is associated a constant b called bias [14]. It is worth 
mentioning that the function which receives the input signal and gen
erates the output one, taking into account a certain type of threshold, is 
called activation function. 

Most of applications associated with the GSR modeling context use 
Feed-Forward Neural Networks (FFNN) which are usually trained with 
the Back-Propagation (BP) training algorithm. This is indeed a 

Fig. 2. Flowchart of the adopted methodology.  

Table 1 
Technical characteristics of the instruments used to measure the various mete
orological parameters.  

Measurement Equipment Technical features 

Global, direct and 
diffuse solar 
radiation 

Solar tracker Kipp & Zonen 
SOLYS2:   

- 1 pyrheliometer CHP1 for 
direct radiation.  

- 2 pyranometers CMP10, 
the first one for global 
radiation and the second 
one with shading ball for 
the diffuse radiation.  

- Range of values up to 4000 
W/m2  

- Operational temperature 
range: from - 40 ◦C to 80 ◦C 

Air temperature CS215 Campbell Sensor  - Measurement range: from - 
40 ◦C to 70 ◦C  

- Accuracy: ±0.3 ◦C (at 
25 ◦C) and ±0.4 ◦C (from 
5 ◦C to 40 ◦C) 

Relative humidity CS215 Campbell Sensor  - Measurement range of 
0–100% (from - 20◦ to +
60 ◦C).  

- Accuracy of ±2% (between 
10% and 90%) at 25 ◦C and 
±4% (from 0% to 10% and 
from 90% to 100%) at 
25 ◦C 

Atmospheric 
pressure 

Numerical barometer Vaisala 
PTB330 

Accuracy of ±0.10 hPa at 
20 ◦C and above 

Sunshine duration Sensor type CSD3 Kipp & 
Zonen  

- Global spectral range: 400 
nm–1100 nm  

- Accuracy: more than 90% 
Wind speed and 

direction 
2D ultrasonic anemometer 
WindSonic4  

- Speed: measurement range 
from 0 to 60 m/s with ±2% 
accuracy  

- Direction: measurement 
range from 0◦ to 359◦ (no 
dead band) with ±2◦

accuracy 
Precipitation Rain gauge Lambrecht 15188 Gauge with tilt system and 

heating  
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supervised iterative learning process based on finding the global mini
mum of the error surface, which is the difference between the model 
output and the target, based on the weights and biases of the ANN [15]. 
The BP process in turn contains different algorithms; we mention for 
example the Gradient Descent (GD), Levenberg-Marquardt (LM), Resil
ient Propagation (RP) and Graded Conjugate Gradient (GCS) [16]. 

3.2. ANN configuration and implementation 

In first instance, the 2020 data set is randomly divided into two 
samples with different percentages: 77% for training, 23% for valida
tion. In order to use this random sampling method, the reproducibility of 
the results is ensured by using a random number generation command 
“rng”. Two different samples rng (0) and rng (1) were used for each 
simulated architecture. This is indeed a legal strategy that brings an 
offload in terms of time and memory. 

The model adopted in this work is a FFNN trained by the LM-BP 
algorithm, developed in MATLAB. The activation function of the hid
den layer is a sigmoid hyperbolic tangent function and the one of the 
output is an identity function. Table 3 provides a brief description of 
each of the mentioned functions. Also, Fig. 5 shows concurrently the 
flowchart of the adopted algorithm and the optimal structuring of a 
generalized neural network. 

As all optimization methods are iterative algorithms, they require 
stopping criteria. The MATLAB toolbox proposes several criteria such as 
the number of iterations, time, performance, premature stop, etc. Two 
stopping criteria were considered as the most critical. These are the 
performance measured on the basis of the mean square error as well as 
the premature stop, which allows to avoid the over-adjustment. Indeed, 
the performance criterion has been set to zero to converge to the lowest 
possible error, while the premature stopping criterion has been chosen 
in order to stop the learning before 40 successive epochs with overfitting 
of the resulting models. It should be noted that the over-adjustment 
leads to a deviation of the validation curve from the learning curve. 
This means that the model is very accurate with the learning inputs. 
However, this process generates large errors in the test and validation 
data. Regarding the criteria of time and number of iterations, these can 
be important when comparing different networks or optimization al
gorithms. Therefore, the time criterion was set to infinity and a large 
value was assigned to the maximum number of epochs (20 000 epochs). 

Tuning ML models is a type of optimization problem, and as 
mentioned earlier the objective function considered here is the MSE. 

Fig. 6 shows the evolution of the MSE for the training and validation 
samples during the learning process. The represented case is the model 
of one hidden layer with 15 neurons. 

3.3. XGBoost theory 

As mentioned earlier, XGBoost is one of the most popular boosting 
tree algorithms for the gradient boosting machine (GBM). It has been 
widely used due to its high problem solving performance and minimal 
feature requirements [18]. Practically, it can be used for regression and 
classification problems. Its operating principle is based on generating a 
weak learner at each step and then accumulating it in the total model. It 
was conceived largely to boost the performance of ML models and 
computational speed. With this algorithm, trees are built in a parallel 
way, instead of being built sequentially. It follows a level-based strategy, 
scanning the gradient values and using these subsets to evaluate the 
quality of the splits at each potential split in the training set. 

Compared to deep learning algorithms, XGBoost is known to be 
easier to use for small datasets running on the CPU. On the other hand, 
comparing it with the random forest method, the main difference be
tween them is that in RF, the trees are built independently of each other, 
while GBM adds a new tree to complete the already built trees. 

Specifically, the XGBoost algorithm is a highly accurate and evolu
tionary implementation of gradient augmentation which extends the 
limits of computational power for augmented tree algorithms. 

3.4. XGBoost configuration 

By simplifying the objective functions that combine the predictive 
and regularization terms from an optimal computational speed, XGBoost 
aims to avoid overfitting while optimizing computational resources. As 
shown in Fig. 7, the additive training process in XGBoost begins with 
fitting the first learner to the entire input data set, and a second model is 
then fitted to this residual data to address the drawbacks of a weak 
learner. This fitting process is repeated several times until the stopping 
criterion is reached. The final model prediction is obtained by summing 
the predictions of each learner. The general function for the prediction 
at step t is shown in eq. (1) [10]: 

f(t)i =
∑t

k=1
fk(xi)= f(t− 1)

i + ft(xi) (eq.1) 

Fig. 3. Importance of the 8 predictors estimated by RF method.  
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Where ft(xi) is the learner at step t; xi is the input variable; fi(t) and fi(t - 
1) are the predictions at t and t – 1. 

3.5. Hyper-parameter tuning for model refinement 

In ML, a hyper-parameter is a parameter whose value is used to 
control the learning process. Hyper-parameters cannot be inferred when 

fitting the ML to the training set because they refer to the model selec
tion task, or as algorithm hyper-parameters, which in principle have no 
influence on the performance of the model but affect the speed and 
quality of the learning process. 

3.5.1. ANN hyper-parameters 
An example of a model hyper-parameter for ANN is the topology and 

size of a neural network. The primary goal is to find the right combi
nation of the values of these hyper-parameters to determine the global 
minimum of the implemented function. In this sense, the number of 
hidden layers, the number of neurons and the learning rate are the most 
crucial hyper-parameters. Therefore, on the one hand, we performed the 
execution of two programs, the first one with a single hidden layer with 
a number of neurons ranging from 9 to 30 and the second one with two 
hidden layers and a number of neurons ranging from 1 to 16 for each 
layer separately. On the other hand, the learning rate is a hyper- 
parameter that controls how much the weight of the ANN is adjusted 
with respect to the lost gradient. Choosing a too-low value for the 
learning rate may result in a long learning process that could get stuck, 
while a too high value may result in learning a suboptimal set of weights 
too quickly or an unstable learning process. To avoid this problem, two 
adaptation coefficients were used. The variation in terms of samples and 
tests of different combinations of hyper-parameters led to 3920 FFNN 
models. Fig. 8 shows the final architecture and configuration of the 
neural networks adopted for 1 and 2 hidden layers. 

3.5.2. XGBoost hyper-parameters 
As mentioned before, the main objective of this step for any ML 

model is to find the right combination of the values of these hyper- 
parameters to determine the global minimum of the implemented 
function. In this sense, based on the studies previously conducted with 
the XGBoost algorithm [10,19] and taking into consideration the rele
vance of each parameter, the hyper-parameters selected for this study 
are grouped in the Table 4. 

3.6. Statistical performance metrics 

The evaluation in terms of performance of the different models was 
carried out on the basis of validation sample using several statistical 
indicators, namely Bias, RMSE-val, MSE-val, MAE-val, and R2-val which 
can be defined as follows: 

Bias: It is generally recognized as a criterion of fidelity, it represents 
the difference between observations and measurements, indicating 
whether the model systematically overestimates or underestimates the 
predicted values. It can be calculated using eq. (2). 

BIAS=
1
n
∑n

i=1
[Xobs(i) − Xsim(i)] (eq. 2) 

Fig. 4. ICE and PDP plots for the variables a. Sunshine duration b. time and c. 
relative humidity. 

Table 2 
Statistical parameters for the input and output variables.  

Variable Unit Minimum Maximum Average 

Input RH % 12.1 100 79.9 
S – 0 91 33.6 
T ◦C 7.5 40.6 18.7 
P hPa 993.9 1022 1007 
Ws m/s 0.1 8.5 1.9 
Wd ◦ 0 360 208.9 
M – 1 12 – 
H – 0 23.5 – 

Output GSR W/m2 0 1130.6 223.3  

Table 3 
Description of the activation functions used [17].  

Function Definition Description Range 
variation of F 
(x) 

Identity F(x) = x Linear or identity activation 
function is the most basic one, it 
copies the input to the output. 
For neural networks the 
activation of the neuron is 
transmitted directly to the 
output. 

[-∞, +∞] 

Hyperbolic 
tangent 

F(x) =
2

1 + e− 2x − 1  

It is a scaled sigmoid function 
characterized by an “S" curve, 
and generally gives good results 
because of its symmetry. It is 
indeed adapted to multilayer 
perceptrons. 

[-1, +1]  
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RMSE: The Root Mean Square Error is an accuracy criteria measuring 
the variation of the predicted values compared to the measured ones 
which allows to characterize the size of the gaps. It is calculated from eq. 
(3). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
[Xobs(i) − Xsim(i)]2

√

(eq.3) 

MSE: The Mean Square Error is the RMSE without the square root as 
indicated in eq. (4). 

MSE=
1
n
∑n

i=1
[Xobs(i) − Xsim(i)]2 (eq. 4) 

MAE: The Mean Absolute Error is the average of the absolute dif
ferences between the real-time observation and the prediction on the 
test sample where all differences have the same weight. In other words, 
it measures the average magnitude of the errors regardless of their di
rection. It is calculated from eq. (5). 

MAE=
1
n
∑n

i=1
|Xobs(i) − Xsim(i)| (eq. 5) 

R2: The coefficient of determination represents the proportion of 
variability measured quantitatively as the sum of squared deviations in 
the data set. This variability is represented by eq. (6). 

R2 = 1 −

∑n

i=1
[Xobs(i) − Xsim(i)]2

∑n

i=1
[Xsim(i)]2

(eq. 6) 

Nonetheless, judging a model on the basis of the indicators 
mentioned above remains difficult, since each indicator is particularly 
dependent on the data used. This is where standardized indicators 
should come in. Being dimensionless parameters, they allow establish
ing a relative performance value for each indicator, so that we can 
standardize the evaluation of the model in question and also compare 
the models to each other afterwards [20]. It is noteworthy to mention 
that for the MSE/RMSE cases, this reference performance value is 
defined, as shown in eq. (7), as the variance of the measured values 
noted σ2

x. It refers to a representation of the MSE or RMSE committed by 
a model where we simulate the output X as the average of the obser
vations denoted X obs. 

σ2
x =MSE − BIAS2 (eq. 7) 

The Nash-Sutcliffe criterion (NS) is a performance indicator that 

Fig. 5. Flowchart of the training process: BP algorithm and optimal ANN structure.  

Fig. 6. Evolution of the MSE as a performance function of the training and 
validation data. 
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estimates the ability of a model to reproduce an observed behavior. It is 
in fact constructed from the normalization of the MSE. The closer the 
value obtained for this criterion is to 1, the better the adequacy of the 
model to the observed values [20]. It can be calculated from eq. (8). 

NS= 1 −
MSE

σ2
x

(eq. 8)  

In addition, we also quote the Relative Volume Error Criterion (RVE), 
which is defined as the error on the modeled volume relative to the total 
observed volume. As with the NS indicator, this time we normalize the 
bias parameter presented in the previous section by a simulation with X 
obs equal to zero. However, we would like to precise that the volume 
invoked for this indicator is used in the sense of an overall quantity of 
the entity in question and not as the ordinary mathematical volume. RVE 
is then the sum of the errors related to the sum of the observed values, 
expressed as a relative value or as a percentage, as shown in eq. (9). 

RVE=
BIAS

∑n

i=1
Xobs(i)

(eq. 9) 

The overall performance of models is affected by σ2
x and bias, as 

shown in eq. (7). It should be mentioned that the calculation of the bias 

(or its normalization RVE) measure the fidelity while the calculation of 
σ2

x , which is the variance of the Bias, measure the precision. 
The results of these indicators were used to implement a selection of 

models that are expected to be the best performing. This preliminary 
selection was based on the best validation values of Bias, RMSE-val, 
MSE-val, MAE-val, R2-val, NS-val and RVE-val. The selected models 
are then candidates for the test phase. 

4. Results and discussion 

4.1. Models performance 

Once the models configuration has been established, the question 
that arises is regarding its reliability and relevance. The quality of a 
model is normally judged from the similarity of the measured data and 
those simulated by the model. However, this assessment has to be made 
from data that the model has never seen or used, which refers to data 
measured over a period other than the one used in the training phase. 
This being said, in order to concretely evaluate the best models selected 
during the validation, we used a database from January 1, 2021 to 
August 31, 2021 collected from the same weather station. 

Fig. 7. Diagram of the XGBoost regression tree model.  

Fig. 8. Architecture of the neural network adopted.  
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4.1.1. ANN models performance 
The results of the different indicators for the models selected in the 

validation phase are presented in Table 5. The choice of the best model is 
based on the best results of the indicators (optimal results are distin
guished in bold). At first glance, the values of R2 greater than 0.97 show 
that there is good agreement between the measured and predicted 
values. Based on the R2 and MAE criteria, the two best ANN models are 
{15} and {8; 7} for the present study with R2 values of 0.9805 and 
0.9793, respectively, and MAE values of 25,7 W/m2, and 23.6 W/m2, 
respectively, which are indeed very close values. 

The evaluation of the NS criterion linked to the normalization of the 
MSE confirms the choice of the models {15} and {8; 7}. It is indeed a 
criterion widely used and quoted in the literature for the evaluation and 
the global performance of modeling. 

According to the results, the model with 2 hidden layers {8; 7} with 
RVE = 1.1 E− 5 is more faithful than the model with 1 hidden layer {15} 
with RVE = 2.4 E− 5. Also, the model {15} with σ2

x = 2063.6 W2/m4 is 
more accurate than the model {8; 7} with σ2

x = 2203.4 W2/m4. As 
mentioned earlier by the positive sign of the Bias (RVE) criterion, both 
models tend to underestimate the global values of solar radiation. 

4.1.2. XGBoost performance 
The XGBoost algorithm was run in the Python environment. By 

testing several combinations of the hyper-parameters, various models 
were obtained. As it was previously mentioned, the choice was based on 
the optimal statistical indicators by taking the 3 best combinations for 
each indicator. With the repetition of some combinations, we eventually 
select 8 models with the best performance results as shown in Table 6. 

Based on the statistical performance metrics reported, model N◦7 

proved to be the optimal model with an R2 value reaching 0.97, a 
minimum MAE equal to 27.84 W/m2, an optimal RMSE equal to 51.23 
and a variance of 2576.93 W2/m4. Table 7 groups the hyper-parameters 
and the values of the associated indicators. We could also choose model 
8, if we wanted to gain a little in terms of fidelity based on accuracy. 
Table 7 represents the combination of hyperparameters involved in 
model N◦7. 

4.1.3. Comparison of ML-models 
The best models obtained by ANN and XGBoost algorithm were 

applied to predict the evolution of global radiation on 8 random days of 
the year 2021 (Figs. 9 and 10). 

According to the results summarized in Table 8, the ANN model {15} 
is better than the XGBOOST one. However, the latter has proven to be a 
powerful learner machine method. More explicitly, on the basis of the 
variance σ2

x , the results show that the ANN method gains in terms of 
accuracy with an interval of [2063.6–2374.8] (W2/m4). On the other 
hand, the dimensionless bias criterion (RVE) shows that the XGBoost 
method wins in fidelity with an optimal interval of [(- 5.07 E− 6) – (- 
1.12 E− 5)]. 

5. Conclusions 

Given the importance of the magnitude of global solar radiation 
arriving at the Earth’s surface for the optimal design and use of solar 
energy conversion systems as well as for other environmental applica
tions that require knowledge of its values, this paper presents an 
application of two AI models (i.e. ANN and XGBoost) to accurately es
timate hourly global solar radiation from meteorological data for a 
humid Mediterranean environment as in the Rabat region. In addition, a 
relevance analysis was conducted by the random-forest method to 
determine the most efficient input variables for the required modelling. 
Thus, 8 temporal and meteorological variables were adopted namely 
sunshine duration, relative humidity, pressure, temperature, wind speed 
and direction, month and time. 

In first instance, the ANN network of multilayer perceptron (MLP) 
type with 1 and 2 hidden layers was developed with the adoption of 
Back-Propagation (BP) algorithm as the adjusting method. Secondly, 
among the ensemble ML methods, the XGBoost model was used with the 
variation of various hyper-parameters such as the number of trees, 
learning rate, early stopping and many others in order to refine the 
elaboration of the models as well as to avoid the problem of over-fitting. 

The performance evaluation of the different models obtained was 
established by various statistical indicators including RMSE, MSE, MAE, 
R2 and also the normalized indicators such as NS and RVE, which reflect 
the relevance of each model in question. The analysis of all these in
dicators allowed us to retain 2 ANN and 1 XGBOOST models, the first 
ANN model with 1 hidden layer model {15} and the second ANN model 
with 2 hidden layers model {8, 7}. The two ANN models were signifi
cantly close in terms of performance and accuracy with a R2 of 98%. The 
XGboost model has also proved to have good results with a R2 of 97%. 
The performances of the latter have revealed that this method, which is 
part of machine learning, is interesting and can be compared to the 

Table 4 
Hyper-parameters used for the optimization of XGboost models.  

Hyper-parameters Significance Range 

N_trees The number of trees in an XGBoost 
model is specified in the n_estimators 
argument. 

[50 75 100 125 
150] 

Max_depth Maximum depth of a tree. The increase 
in the value of this quantity is susceptible 
to the over-fitting of the model. 

[3 4 5 6 7 8 9 10 ] 

Learning rate The step size at each iteration by moving 
towards minimization of a loss function. 

[0.01 0.05 0.1 
0.15 0.2 0.25 
0.3] 

Subsample The subsample parameters in XGBoost 
control the percentage of rows used to 
build the tree. 

[0.3 0.4 0.5 0.6 
0.7 0.8 0.9 1] 

Gamma Gamma specifies the minimum loss 
reduction required to perform a cut and 
makes the algorithm conservative. 

[0 0.2 0.4 0.6 0.8 
1 1.2 1.5] 

Early stopping 
rounds 

Early stopping is used to control the 
patience of the number of iterations we 
will wait for the next decrease in the loss 
value. 

[5 20 40] 

Min_child_weight It is used to control overfitting being 
defined as the minimum sum of the 
weights of all observations required in a 
child model. 

[1 2 3 4 5 6 7 8 9 
10 11 12 13 14 
15]  

Table 5 
Optimum ANN model selection.   

n MSE(W2/m4) RMSE (W/m2) MAE (W/m2) BIAS(W/m2) R2 NS RVE σ2
x (W

2/m4) 

1 hidden layer 15 2068.2 45.5 25.7 2.1 0.9805 0.9804 2.4 E− 5 2063.6 
17 2336.0 48.3 27.5 1.8 0.9781 0.9779 2.0 E− 5 2332.7 
27 2263.7 47.6 27.1 3.7 0.9787 0.9785 4.1 E− 5 2263.7 
28 2156.1 46.4 26.1 1.5 0.9797 0.9796 1.7 E-5 2153.8 

2 hidden layers 6;8 2334.1 48.3 26.4 1.6 0.9779 0.9779 1.8 E− 5 2331.5 
4;10 2268.1 47.6 25.5 3.1 0.9787 0.9785 3.4 E− 5 2258.8 
8;5 2376.6 48.8 24.3 1.4 0.9775 0.9775 1.5 E− 5 2374.8 
13;4 2362.6 48.6 24.3 1.7 0.9777 0.9776 1.9 E− 5 2359.7 
8;7 2204.4 47.0 23.6 1.0 0.9793 0.9791 1.1 E-5 2203.4  
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neural network method, which is part of the deep learning method. 
By way of conclusion, the purpose of the modeling in terms of ac

curacy, simplicity or fidelity remains a decisive factor in the selection of 
the algorithm of the model to be adopted. 

The results of this work thus contribute to the mutual intention of 

testing the applicability of a common set of methods and approaches to 
estimate solar radiation in similar geographical regions with wet aspect. 

Table 6 
Optimum XGBoost model selection.  

Models MSE(W2/m4) RMSE (W/m2) MAE (W/m2) BIAS (W/m2) R2 NS RVE σ2
x (W

2/m4) 

1 2638.38 51.36 28.88 - 7.14 0.9751 0.9751 - 5.07 E− 6 2587.35 
2 2633.80 51.32 28.83 - 7.09 0.9751 0.9751 - 5.04 E− 6 2583.43 
3 2626.55 51.25 28.00 - 6.85 0.9752 0.9751 - 4.86 E− 6 2579.59 
4 3939.05 62.76 35.73 - 15.78 0.9629 0.9628 - 1.12 E− 5 3689.94 
5 3939.05 62.76 35.73 - 15.78 0.9628 0.9629 - 1.12 E− 5 3689.94 
6 3939.05 62.76 35.7313 - 15.7832 0.9628 0.9629 - 1.12 E− 5 3689.94 
7 2624.82 51.23 27.84 - 6.92 0.9753 0.9752 - 4.91 E− 6 2576.93 
8 2630.75 51.29 27.88 - 6.51 0.9751 0.9751 - 4.62 E− 6 2588.29  

Table 7 
Hyper-parameters values of the best XGBoost model obtained.   

Hyper-parameters 

N tree Max depth Learning rate Subsample Gamma Early stop Min childW 

Model N◦7 100 20 0.1 1.0 0.0 40 15  

Fig. 9. Comparison between measured and simulated data by the 1 hidden layer {15} and XGBoost N◦7 models.  

Fig. 10. Comparison between measured and simulated data by the 2 hidden layers {8; 7} and XGBoost N◦7 models.  
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