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Abstract. Plant diseases pose a significant threat to agriculture, causing 

substantial yield losses and economic damages worldwide. Traditional methods 

for detecting plant diseases are often time-consuming and require expert 

knowledge. In recent years, deep learning-based approaches have demonstrated 

great potential in the detection and classification of plant diseases. In this paper, 

we propose a Convolutional Neural Network (CNN) based framework for 

identifying 15 categories of plant leaf diseases, focusing on Tomato, Potato, and 

Bell pepper as the target plants. For our experiments, we utilized the publicly 

available PlantVillage dataset. The choice of a CNN for this task is justified by 

its recognition as one of the most popular and effective deep learning methods, 

especially for processing spatial data like images of plant leaves. We evaluated 

the performance of our model using various performance metrics, including 

accuracy, precision, recall, and F1-score. Our findings indicate that our approach 

outperforms state-of-the-art techniques, yielding encouraging results in terms of 

disease identification accuracy and classification precision.  
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1 Introduction  

Plant diseases pose significant threats to agricultural productivity, food security, and 

the global economy [1]. Detecting and diagnosing plant diseases at an early stage is 

crucial for effective disease management and prevention. Over the years, advances in 

technology and the application of various scientific methods have greatly improved the 

process of plant disease detection. The detection involves identifying and determining 

the presence of pathogens, such as bacteria, fungi, viruses, and other harmful 

microorganisms, that can cause diseases in plants. Timely and accurate detection 

enables farmers, plant pathologists, and researchers to take appropriate measures to 

mitigate the spread and impact of diseases, thus minimizing crop losses and ensuring 

sustainable agricultural practices.  
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Traditional methods of plant disease detection primarily relied on visual observations 

of symptoms exhibited by the infected plants. These symptoms could include wilting, 

discoloration, leaf spots, abnormal growth patterns, and various other physical changes. 

While visual inspection remains a valuable tool, it is often limited by the subjectivity of 

human observation and the difficulty in differentiating between similar symptoms 

caused by different pathogens. In recent years, technological advancements have 

revolutionized plant disease detection by providing more precise, rapid, and reliable 

methods. Here are some of the key techniques and tools used in modern plant disease 

detection:  

1. Molecular Techniques: Polymerase Chain Reaction (PCR), DNA sequencing, 

and other molecular biology methods [2] are widely employed for the identification and 

characterization of plant pathogens. These techniques enable the detection of specific 

DNA or RNA sequences unique to a particular pathogen, allowing for highly accurate 

and targeted diagnosis.  

2. Immunoassays: Enzyme-linked immunosorbent Assays (ELISA) and other 

immunological techniques [3] are utilized to detect the presence of plant pathogens 

based on the specific immune response generated by the host plants. These tests rely on 

the recognition and binding of pathogen-specific antigens by antibodies, providing a 

sensitive and specific detection method.  

3. Machine learning (ML) and Artificial Intelligence (AI): By leveraging ML and 

AI-based models [6,7,8], large datasets of plant images, genomic sequences, and 

environmental parameters can be analyzed to develop predictive models for disease 

detection. These models can identify patterns, correlations, and anomalies that may not 

be apparent to human observers, improving the accuracy and efficiency of detection.  

By using machine learning-based work, the performance of classifying the diseases 

obtained is high and the time of classification is much less in comparison with other 

techniques. For this, in this work, a deep learning-based [9-11] framework is designed 

to classify the Tomato and Potato leaf diseases. Here, a CNN [12, 13] based model is 

developed for the classification of Tomato, Potato, and Bell pepper plant diseases.   

Kaur et al. [14] employed a CNN-based framework to detect diseases in tomato, 

potato, and grape leaves. They utilized a dataset containing more than 4,000 images of 

diseased and healthy leaves and trained several CNN models to classify the images as 

either diseased or healthy. The best-performing model achieved an accuracy of 98.5%.  

In [15], the authors proposed a technique that involves acquiring images of healthy and 

diseased tomato plants, pre-processing the images to remove noise and unwanted 

regions, extracting features from the pre-processed images, selecting relevant features, 

and training an SVM classifier to categorize the tomato images as healthy or diseased. 

The proposed technique was evaluated on a dataset of tomato images with four diseases: 

Bacterial Spot, Early Blight, Late Blight, and Septoria Leaf Spot. The results 

demonstrated an accuracy of 94.7% in detecting tomato diseases using the proposed 

technique. Tiwari et al. [14] developed an automated system to diagnose and classify 

diseases like early blight, late blight, and healthy conditions in potato leaves, offering a 

novel solution. The results demonstrated an accuracy of 97.8% over the test dataset, 

with improvements of 5.8% and 2.8%. Srinivasan et al. [15] proposed an image 
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categorization technique to identify healthy and unhealthy leaves from a multilevel 

image dataset. Additionally, it identifies the specific type of disease affecting the 

unhealthy leaves. Using the CNN technique, they extracted 39 types of diseases in 13 

crop species from the PlantVillage image dataset, achieving an accuracy of 98.75% at 

epoch 25.  

In Section 2 the materials and method are discussed, followed by the experiment and 

results analysis in Section 3. Finally, we present our conclusion and future work in 

Section 4. 

 

2 Material & Method  

Deep learning models based on CNN frameworks [9,10] are specifically designed for 

processing and analyzing visual data, such as images. These models utilize layers that 

play a vital role in extracting significant features and patterns from raw input images. 

Here are some key CNN layers:  

i. Convolutional Layer: The convolutional layer applies a set of filters or kernels 

to the input image, performing a mathematical operation known as convolution. This 

operation detects local patterns by sliding the filters across the image and calculating 

dot products between filter weights and pixel values. Convolutional layers are capable 

of capturing features like edges, textures, and shapes.  

  

ii. Pooling Layer: Pooling layers reduce the spatial dimensions of the feature 

maps obtained from convolutional layers. The most common pooling operation is max 

pooling, which downsamples the input by selecting the maximum value within a 

predefined neighbourhood. Pooling helps to achieve spatial invariance and reduces the 

computational burden by summarizing the most salient features.  

  

iii. Fully Connected/dense Layer: The fully connected layer is typically placed 

after the convolutional and pooling layers. It connects all neurons from the previous 

layer to every neuron in the current layer. It captures high-level abstractions by 

combining the features learned from previous layers. The output of this layer is often 

fed into a Soft-Max activation function for classification.  

2.1 Dataset  

In this study, we utilized the publicly available PlantVillage dataset, curated by Hughes 

& Salathe [16] (https://www.kaggle.com/datasets/emmarex/plantdisease), for the 

purpose of detecting plant leaf diseases. The PlantVillage dataset comprises a total of 

20,639 images, thoughtfully organized into two categories: diseased and healthy leaves 

of various plant species. These images have been expertly classified by specialists in 

the field of plant pathology. The dataset primarily focuses on three plant species: Bell 

Pepper, Potato, and Tomato. The photographs were taken with leaves positioned against 

a paper sheet, which provided a consistent gray or black background. Within the 

PlantVillage dataset, there are 15 distinct classes of diseases, as listed in Table 1. For 
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visual reference, a selection of sample images from the dataset can be observed in Fig. 

1.  

Table 1. The details specification of Plant Village dataset [16].  

Plant names  Disease names  No. of images  
Bell pepper  Healthy  1478  

Diseased: Bacterial spot  997  

Potato  Healthy  152  
Diseased: Early Blight  1000  

Diseased: Late Blight  1000  
Tomato  Healthy  1591  

Diseased: Mosaic Virus  373  
Diseased: Bacterial spot  2127  
Diseased: Early Blight  1000  
Diseased: Late Blight  1909  
Diseased: Leaf Mold  952  
Diseased: Septoria Leaf Spot  1771  
Diseased: Two Spotted Spider mites  1676  
Diseased: Target Spot  1404  
Diseased: Yellow Leaf Curl Virus  3209  

 

 

 
(a)  

 
(b) 

 
(c) 

 

Fig. 1. Sample leaf images of affected plants: in (a) images of Bacterial Spot disease, in 

Bellpepper (b) Early Blight, in Potato and (c) Late Blight Tomato.  

3.2  Data Pre-Processing:  

The pixel values of the images are rescaled to be in the range of 0 to 1 by applying the 

rescale argument with a value of 1/255. This step ensures that the pixel values are 

normalized, which can help improve the training process. The dataset is split into 

training and validation sets, this split allows for evaluating the model's performance on 
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unseen data. This resizing ensures that all input images have consistent dimensions. It 

helps in standardizing the input size for the model. Here, the images are resized to a 

target size of (224, 224). These pre-processing steps ensure that the input images are 

appropriately rescaled and resized before being fed into the model for training and 

evaluation.  

3.3  Proposed Model:  

Plants are vulnerable to a range of disease-related disorders and infections. These is-

sues can arise from various causes, including disturbances caused by environmental 

conditions such as temperature, humidity, inadequate or excessive nutrients, and light 

exposure. Additionally, plants commonly face bacterial, viral, and fungal diseases.  

 

Fig. 2. The proposed C5P3D2 architecture for classification of the plant diseases  

To classify the fifteen categories of potato and tomato plant disease, we propose a plant 

disease classification architecture called C5P3D2 which is shown in Fig. 2. This 

architecture consists of 5 Convolutional layers, 3 max-pooling layers, and 2 dense 

layers. The input image is passed through the first Convolutional layer with 128 filters 

of size 5x5. The resulting feature map is then fed into another Convolutional layer with 

a filter size of 64 of size 3x3. The output of this Convolutional layer is further processed 

by a max-pooling layer of filter size 2x2.The output of this pooling layer is further 

processed by another Convolutional layer with 32 filters of size 3x3. After this the 

resulting feature map is then fed into another max-pooling layer of filter size 2x2. Next, 

the output from the previous layer is inputted into a pair of Convolutional layers with 

filter sizes of 3x3 and 16, and 3x3 and 16, respectively. Each Convolutional layer 

captures different aspects of the input features. After each Convolutional layer, a max-

pooling layer with a filter size of 3x3 is applied. Two batch normalization layers are 

utilized before the dense 1 and dense2 to enhance the stability and convergence of the 
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network. Subsequently, dropout regularization is employed with dropout rates of 0.5 

after the dense layers. Two dense layers are included in the architecture with sizes of 

128 and 15, respectively. These layers perform weighted sums of the input features. 

Finally, the output layer consists of 15 neurons, representing the classification 

categories. The generated parameters in our model are tabulated in Table 2.   

Table 2. The generated parameters in C5P3D2 model  

Layers  Output dimension   #Parameter  

Convolution_1  (220,220,128)   9,728  

Convolution_2  (218,218,64)   73,792  

Convolution_3  (107,107,52)   18,464  

Convolution_4  (51,51,16)   4,624  

Convolution_5  (49,49,16)   2,320  

Batchnormalization_1  9216   36,864  

Dense_1  128   11,79,776  

Batchnormalization_2  128   512  

Dense_2  15   1,935  

Total Parameters   1,328,015  

Total Trainable Parameters   1,309,327  

 

3 Experiment & results  

3.1 System setup  

Our proposed system was tested and assessed on a GPU machine equipped with dual 

Intel(R) Core(TM) i5-10400H CPUs, operating at a clock speed of 2.60GHz, 

accompanied by 32 GB of RAM, and powered by two NVIDIA Quadro RTX 5000 

GPUs. The machine ran on Windows 10 Pro OS version 20H2 and utilized TensorFlow 

2.0.0 for training and inference of deep learning models.  

3.2 Training regime  

  

The dataset is split into train and test sets using different ratios. Dataset split into train-

test sets in CNN training to evaluate model performance on unseen data, prevent 

overfitting, and optimize hyperparameters. Training set used for learning, test set for 

unbiased evaluation. Specifically, the ratios used are 8:2, 7:3, and 6:4. These ratios 

determine the proportion of images allocated to the training and testing sets. For the 8:2 

ratios, out of the total image pool of 20, 639, 16, 512 images are assigned to the training 

set, while 4, 127 images are allocated to the testing set. For the 7:3 ratios, 14,444 images 

are used for training, and 6,192 images are used for testing. For the 6:4 ratios, 12,383 

images are used for training, and 8,256 images are used for testing. The training and 
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testing sets are used independently of each other to avoid data leakage. This means that 

the models are trained only on the training set and evaluated only on the testing set.  

3.3 Evaluation Protocols  

There are four different evaluation protocols are considered in this work. Apart from 

accuracy precision, recall, and F1Score are measured to evaluate the model’s 

performance. The Equations of the corresponding evaluation parameters are presented 

below:  

Accuracy = (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)/ (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)             (1)  

Precision = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)       (2)  

Recall = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)         (3)  

F1 score= 2* (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙/ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙)                         (4)  

In our C5P3D2 architecture, Categorical Cross-Entropy Loss function was used which 

can be described by Equation 5.  

L=-𝑁 1 ∑𝑁𝑖=1 ∑𝐶𝑗=1 𝑦𝑖𝑗log(𝑝𝑖𝑗)                             (5)  

Here, N is the number of samples in the batch, is the number of classes in the 

classification problem, 𝑦𝑖𝑗is an indicator function that is 1 if the sample i belongs to 

class j and 0 otherwise, and 𝑝𝑖𝑗 is the predicted probability that sample i belongs to class 

j.   

3.4 Result & discussions  

3.4.1 Ablation Study  

Table 3. Ablation study to build a CNN-based framework to get higher performance  

Architecture  Convolutional  Pooling  Dense  Accuracy (%)  

CPD  5x5  3x3  256  81.54  

CCPPDD  5x5, 3x3  3x3, 2x2  256,128  84.02  

CPPDD  3x3  2x2, 2x2  256, 128  85.05  

CCPDD  5x5, 3x3  3x3  256, 128  79.52  

CCPPD  3x3, 5x5  3x3, 2x2  256  86.35  

C5P3D2  5x5,3x3,3x3,3x3,3x3  2x2, 3x3, 2x2  128, 15  94.95  
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We performed a rigorous experiment to establish a suitable framework for our problem. 

We have used different combinations of convolutional, pooling, and dense layers along 

with the different dimensional filters. In Table 3 the outcome of these experiments is 

tabulated considering 8:2 train-test set, batch size of 32, and 100 epoch trial runs. 

Finally, C5P3D2 architecture was considered for our work.  

3.4.2 Our results  

 In Table 4 the performance of our C5P3D2 architecture was measured by changing the 

epoch values of 20, 50, and 100 for different train-test ratios and batch size of 32 at the 

beginning. The maximum accuracy of 94.95% has been obtained by running 100 epochs 

in 80:20 ratios. Considering 100 epochs, the rest of the experiments were performed. In 

Fig. 3 and 4 represents the training performance of C5P3D2 architecture with training and 

validation curve.   

  

Table 4. The accuracies for different train-test ratios for 20, 50 and 100 epochs run  

Train-test Ratio  Epoch  Accuracy (%)  

80:20  

20  77.58  

50  94.00  

100  94.95  

70:20  

20  93.76  

50  94.45  

100  94.62  

60:40  

20  91.85  

50  92.43  

100  94.13  

  

From Table 5 it is observed that in 100 epochs the highest accuracy and precision are 

obtained 94.95% and 94.94%, respectively. So, we keep this epoch constant for the rest 

of our experiment. Considering the epoch value as 100 and batch size 32, different train-

test ratios were considered. We further investigated by changing the batch size of 32, 

64, and 128 considering the 100 epochs and 80:20 train-test ratio which is tabulated in 

Table 6. It is seen that there are improvements in accuracy, precision, recall, and f-score, 

respectively.  The train-test accuracy and loss curves for 100 epochs 128 batch size and 

80:20 train test ratio are shown in Figs. 3 (a) and (b), respectively. 

  

Table 5. For the 8:2 train-test ratio the performance measurement by changing the epochs  

 pochs  Accuracy  Precision  Recall  F1-Score  

20  77.85%  82.35%  77.58%  75.07%  



9  

50  94%  94%  94%  93%  

100  94.95%  94.94%  94.95%  94.91%  

  

Table 6. For 100 epochs, 8:2 train-test ratio for different batch size 

Batch size  Accuracy  Precision  Recall  F1-score  

32  94.95%  94.94%  94.95%  94.91%  

64  95.41%  95.43%  95.41%  94.46%  

128  95.51%  95.51%  95.24%  95.47%  

  

 

(a)                                                        (b) 

Fig. 3. Training and validation accuracy (a) and loss curves (b) for 100 epochs 128 batch size 

and 80:20 train test ratio.  

  

Table 7. The confusion matrix of the highest result i.e., corresponding to the accuracy of 95.51% 

for 128 batch size in 100 epochs of our proposed model is presented.  

 
  

Here full names corresponding to the acronyms are: 

 

PbBs=Peeper_bell_Bacterial_spot, Pbh=Peeper_bell_healthy, 

PEb=Potato_Early_blight,  PLb=Poato_Late_blight,  Ph=Potato_healthy, 
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TBs=Tomato_Bacterial_spot,  TEb=Tomato_Early_blight, 

TLb=Tomato_Late_blight,TLM=Tomato_Leaf_Mold,  

Tls=Tomato_Septoria_leaf_spot, 

TSmTssm=Tomato_Spider_mites_Two_spotted_spider_mites,  

TTs=Tomato_Target_Spot,  

TTYCV= Tomato_Tomato_YellowLeaf_Curl_Virus,  

TTmv= Tomato_Tomato_mosaic_virus,  

Th= Tomato_healthy. 

 

It is observed from the confusion matrix shown in (Table 7). that for the class PbBs, 185 

instances are correctly classified, 292 instances are correctly classified for Pbh,, 195 

instances are correctly classified for Potato_Eb, 193 instances are correctly classified for 

PLb, 25 instances are correctly classified for Ph, 417 instances are correctly classified for 

TBs, 156 instances are correctly classified for TEB, 362 instances are correctly classified 

for TLb, 177 instances are correctly classified for TLM, 330 instances are correctly 

classified for TSls, 321 instances are correctly classified for TSmTssm, 257 instances are 

correctly classified for TTS, 635 instances are correctly classified for TTYCV, 74 

instances are correctly classified for TTmv and 317 instances are correctly classified.  

 

3.4.3  Testing the model with external data  

In the testing phase, we evaluated external images, and as shown in Fig. 4, the model 

accurately classified a "Pepper bell healthy" image. This classification aligns perfectly with 

the ground truth observation, as expected. 

 

 
Fig. 4. Pepper bell healthy image tested using C5P3D2 architecture. 

3.4.4 Comparison  

Our C5P3D2-based approach for plant disease detection demonstrates competitive 

results compared to other studies. Which is presented in Table 8. While Prajwala TM 

et al. [17] achieved 94-95% accuracy with a LeNet variant for tomato leaves, our model, 

which extends to multiple plants, shows a gain in accuracy of more than 1%. Salih et 

al.'s [18] CNN model yielded a gain in accuracy of less than 1%, despite using several 

levels of deep learning approaches. Basavaiah and Anthony's [19] multi-feature fusion 

method did not achieve a significant improvement in accuracy compared to our 



11  

approach. It is seen that our method produced 18.5% higher accuracy compared to the 

MobileNetV4.  

 

Table 8. Comparison of our method with standard CNN on PlantVillage dataset  

Methods  Accuracy  Recall  Precision  F1-Score  

VGG-16   52.50%  51.50%  50.02%  52.49%  

MobileNetV3   71.40%  56.10%  70.41%  82.43%  

MobileNetV4   77.01%  66.05%  65.02%  66.50%  

Proposed   95.51%  95.51%  94.24%  95.47%  

  

4 Conclusion & Future Scope  

We have designed a C5P3D2 framework for the detection of plant diseases in pepper 

bell, tomato, and potato leaves. The system successfully takes image inputs from the 

user and provides output indicating the detected disease. This enables farmers to take 

appropriate preventive measures and use the correct pesticides. This proposed 

framework can be extended to other crops that suffer from diseases, given the 

availability of a sufficiently large dataset for that specific crop. In the future, we will 

consider improving the performance of the method by utilizing more advanced deep 

learning-based techniques. We plan to deploy the system as a GUI-based platform. The 

web interface may also include a forum for farmers to discuss the current trends they 

face in different diseases. The future of plant disease detection using CNNs involves 

expanding and di-versifying training datasets, optimizing CNN architectures for 

enhanced performance, integrating real-time monitoring technologies, exploring 

multimodal analysis techniques, improving the interpretability of CNN models, and 

addressing practical challenges for widespread deployment in agricultural settings.  
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