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Abstract. Plant diseases pose a significant threat to agriculture, causing
substantial yield losses and economic damages worldwide. Traditional methods
for detecting plant diseases are often time-consuming and require expert
knowledge. In recent years, deep learning-based approaches have demonstrated
great potential in the detection and classification of plant diseases. In this paper,
we propose a Convolutional Neural Network (CNN) based framework for
identifying 15 categories of plant leaf diseases, focusing on Tomato, Potato, and
Bell pepper as the target plants. For our experiments, we utilized the publicly
available PlantVillage dataset. The choice of a CNN for this task is justified by
its recognition as one of the most popular and effective deep learning methods,
especially for processing spatial data like images of plant leaves. We evaluated
the performance of our model using various performance metrics, including
accuracy, precision, recall, and F1-score. Our findings indicate that our approach
outperforms state-of-the-art techniques, yielding encouraging results in terms of
disease identification accuracy and classification precision.
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1 Introduction

Plant diseases pose significant threats to agricultural productivity, food security, and
the global economy [1]. Detecting and diagnosing plant diseases at an early stage is
crucial for effective disease management and prevention. Over the years, advances in
technology and the application of various scientific methods have greatly improved the
process of plant disease detection. The detection involves identifying and determining
the presence of pathogens, such as bacteria, fungi, viruses, and other harmful
microorganisms, that can cause diseases in plants. Timely and accurate detection
enables farmers, plant pathologists, and researchers to take appropriate measures to
mitigate the spread and impact of diseases, thus minimizing crop losses and ensuring
sustainable agricultural practices.



Traditional methods of plant disease detection primarily relied on visual observations
of symptoms exhibited by the infected plants. These symptoms could include wilting,
discoloration, leaf spots, abnormal growth patterns, and various other physical changes.
While visual inspection remains a valuable tool, it is often limited by the subjectivity of
human observation and the difficulty in differentiating between similar symptoms
caused by different pathogens. In recent years, technological advancements have
revolutionized plant disease detection by providing more precise, rapid, and reliable
methods. Here are some of the key techniques and tools used in modern plant disease
detection:

1. Molecular Techniques: Polymerase Chain Reaction (PCR), DNA sequencing,
and other molecular biology methods [2] are widely employed for the identification and
characterization of plant pathogens. These techniques enable the detection of specific
DNA or RNA sequences unique to a particular pathogen, allowing for highly accurate
and targeted diagnosis.

2. Immunoassays: Enzyme-linked immunosorbent Assays (ELISA) and other
immunological techniques [3] are utilized to detect the presence of plant pathogens
based on the specific immune response generated by the host plants. These tests rely on
the recognition and binding of pathogen-specific antigens by antibodies, providing a
sensitive and specific detection method.

3. Machine learning (ML) and Artificial Intelligence (Al): By leveraging ML and
Al-based models [6,7,8], large datasets of plant images, genomic sequences, and
environmental parameters can be analyzed to develop predictive models for disease
detection. These models can identify patterns, correlations, and anomalies that may not
be apparent to human observers, improving the accuracy and efficiency of detection.

By using machine learning-based work, the performance of classifying the diseases
obtained is high and the time of classification is much less in comparison with other
techniques. For this, in this work, a deep learning-based [9-11] framework is designed
to classify the Tomato and Potato leaf diseases. Here, a CNN [12, 13] based model is
developed for the classification of Tomato, Potato, and Bell pepper plant diseases.

Kaur et al. [14] employed a CNN-based framework to detect diseases in tomato,
potato, and grape leaves. They utilized a dataset containing more than 4,000 images of
diseased and healthy leaves and trained several CNN models to classify the images as
either diseased or healthy. The best-performing model achieved an accuracy of 98.5%.
In [15], the authors proposed a technique that involves acquiring images of healthy and
diseased tomato plants, pre-processing the images to remove noise and unwanted
regions, extracting features from the pre-processed images, selecting relevant features,
and training an SVM classifier to categorize the tomato images as healthy or diseased.
The proposed technique was evaluated on a dataset of tomato images with four diseases:
Bacterial Spot, Early Blight, Late Blight, and Septoria Leaf Spot. The results
demonstrated an accuracy of 94.7% in detecting tomato diseases using the proposed
technique. Tiwari et al. [14] developed an automated system to diagnose and classify
diseases like early blight, late blight, and healthy conditions in potato leaves, offering a
novel solution. The results demonstrated an accuracy of 97.8% over the test dataset,
with improvements of 5.8% and 2.8%. Srinivasan et al. [15] proposed an image



categorization technique to identify healthy and unhealthy leaves from a multilevel
image dataset. Additionally, it identifies the specific type of disease affecting the
unhealthy leaves. Using the CNN technique, they extracted 39 types of diseases in 13
crop species from the PlantVillage image dataset, achieving an accuracy of 98.75% at
epoch 25.

In Section 2 the materials and method are discussed, followed by the experiment and
results analysis in Section 3. Finally, we present our conclusion and future work in
Section 4.

2 Material & Method

Deep learning models based on CNN frameworks [9,10] are specifically designed for
processing and analyzing visual data, such as images. These models utilize layers that
play a vital role in extracting significant features and patterns from raw input images.
Here are some key CNN layers:

i Convolutional Layer: The convolutional layer applies a set of filters or kernels
to the input image, performing a mathematical operation known as convolution. This
operation detects local patterns by sliding the filters across the image and calculating
dot products between filter weights and pixel values. Convolutional layers are capable
of capturing features like edges, textures, and shapes.

ii. Pooling Layer: Pooling layers reduce the spatial dimensions of the feature
maps obtained from convolutional layers. The most common pooling operation is max
pooling, which downsamples the input by selecting the maximum value within a
predefined neighbourhood. Pooling helps to achieve spatial invariance and reduces the
computational burden by summarizing the most salient features.

iii. Fully Connected/dense Layer: The fully connected layer is typically placed
after the convolutional and pooling layers. It connects all neurons from the previous
layer to every neuron in the current layer. It captures high-level abstractions by
combining the features learned from previous layers. The output of this layer is often
fed into a Soft-Max activation function for classification.

2.1 Dataset

In this study, we utilized the publicly available PlantVillage dataset, curated by Hughes
& Salathe [16] (https://www.kaggle.com/datasets/emmarex/plantdisease), for the
purpose of detecting plant leaf diseases. The PlantVillage dataset comprises a total of
20,639 images, thoughtfully organized into two categories: diseased and healthy leaves
of various plant species. These images have been expertly classified by specialists in
the field of plant pathology. The dataset primarily focuses on three plant species: Bell
Pepper, Potato, and Tomato. The photographs were taken with leaves positioned against
a paper sheet, which provided a consistent gray or black background. Within the
PlantVillage dataset, there are 15 distinct classes of diseases, as listed in Table 1. For



visual reference, a selection of sample images from the dataset can be observed in Fig.
1.

Table 1. The details specification of Plant Village dataset [16].

Plant names Disease names No. of images
Bell pepper Healthy 1478
Diseased: Bacterial spot 997
Potato Healthy 152
Diseased: Early Blight 1000
Diseased: Late Blight 1000
Tomato Healthy 1591
Diseased: Mosaic Virus 373
Diseased: Bacterial spot 2127
Diseased: Early Blight 1000
Diseased: Late Blight 1909
Diseased: Leaf Mold 952
Diseased: Septoria Leaf Spot 1771
Diseased: Two Spotted Spider mites 1676
Diseased: Target Spot 1404
Diseased: Yellow Leaf Curl Virus 3209

Fig. 1. Sample leaf images of affected plants: in (a) images of Bacterial Spot disease, in
Bellpepper (b) Early Blight, in Potato and (c) Late Blight Tomato.

3.2  Data Pre-Processing:

The pixel values of the images are rescaled to be in the range of 0 to 1 by applying the
rescale argument with a value of 1/255. This step ensures that the pixel values are
normalized, which can help improve the training process. The dataset is split into
training and validation sets, this split allows for evaluating the model's performance on



unseen data. This resizing ensures that all input images have consistent dimensions. It
helps in standardizing the input size for the model. Here, the images are resized to a
target size of (224, 224). These pre-processing steps ensure that the input images are
appropriately rescaled and resized before being fed into the model for training and
evaluation.

3.3 Proposed Model:

Plants are vulnerable to a range of disease-related disorders and infections. These is-
sues can arise from various causes, including disturbances caused by environmental
conditions such as temperature, humidity, inadequate or excessive nutrients, and light
exposure. Additionally, plants commonly face bacterial, viral, and fungal diseases.
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Fig. 2. The proposed C5P3D2 architecture for classification of the plant diseases

To classify the fifteen categories of potato and tomato plant disease, we propose a plant
disease classification architecture called C5P3D2 which is shown in Fig. 2. This
architecture consists of 5 Convolutional layers, 3 max-pooling layers, and 2 dense
layers. The input image is passed through the first Convolutional layer with 128 filters
of size 5x5. The resulting feature map is then fed into another Convolutional layer with
a filter size of 64 of size 3x3. The output of this Convolutional layer is further processed
by a max-pooling layer of filter size 2x2.The output of this pooling layer is further
processed by another Convolutional layer with 32 filters of size 3x3. After this the
resulting feature map is then fed into another max-pooling layer of filter size 2x2. Next,
the output from the previous layer is inputted into a pair of Convolutional layers with
filter sizes of 3x3 and 16, and 3x3 and 16, respectively. Each Convolutional layer
captures different aspects of the input features. After each Convolutional layer, a max-
pooling layer with a filter size of 3x3 is applied. Two batch normalization layers are
utilized before the dense 1 and dense2 to enhance the stability and convergence of the



network. Subsequently, dropout regularization is employed with dropout rates of 0.5
after the dense layers. Two dense layers are included in the architecture with sizes of
128 and 15, respectively. These layers perform weighted sums of the input features.
Finally, the output layer consists of 15 neurons, representing the classification
categories. The generated parameters in our model are tabulated in Table 2.

Table 2. The generated parameters in C5P3D2 model

Layers Output dimension #Parameter
Convolution_1 (220,220,128) 9,728
Convolution_2 (218,218,64) 73,792
Convolution_3 (107,107,52) 18,464
Convolution_4 (51,51,16) 4,624
Convolution_5 (49,49,16) 2,320
Batchnormalization_1 9216 36,864
Dense_1 128 11,79,776
Batchnormalization_2 128 512
Dense_2 15 1,935
Total Parameters 1,328,015
Total Trainable Parameters 1,309,327

3 Experiment & results

3.1  System setup

Our proposed system was tested and assessed on a GPU machine equipped with dual
Intel(R) Core(TM) i5-10400H CPUs, operating at a clock speed of 2.60GHz,
accompanied by 32 GB of RAM, and powered by two NVIDIA Quadro RTX 5000
GPUs. The machine ran on Windows 10 Pro OS version 20H2 and utilized TensorFlow
2.0.0 for training and inference of deep learning models.

3.2 Training regime

The dataset is split into train and test sets using different ratios. Dataset split into train-
test sets in CNN training to evaluate model performance on unseen data, prevent
overfitting, and optimize hyperparameters. Training set used for learning, test set for
unbiased evaluation. Specifically, the ratios used are 8:2, 7:3, and 6:4. These ratios
determine the proportion of images allocated to the training and testing sets. For the 8:2
ratios, out of the total image pool of 20, 639, 16, 512 images are assigned to the training
set, while 4, 127 images are allocated to the testing set. For the 7:3 ratios, 14,444 images
are used for training, and 6,192 images are used for testing. For the 6:4 ratios, 12,383
images are used for training, and 8,256 images are used for testing. The training and



testing sets are used independently of each other to avoid data leakage. This means that
the models are trained only on the training set and evaluated only on the testing set.

3.3  Evaluation Protocols

There are four different evaluation protocols are considered in this work. Apart from
accuracy precision, recall, and F1Score are measured to evaluate the model’s
performance. The Equations of the corresponding evaluation parameters are presented
below:

Accuracy = (TruePositives + TrueNegatives)/ (TruePositives +

TrueNegatives + FalsePositives + FalseNegatives) @
Precision = TruePositives | (TruePositives + FalsePositives) 2)
Recall = TruePositives/ (TruePositives + FalseNegatives) 3)
F1 score= 2* (precision*recalll precision +recal) 4)

In our C5P3D2 architecture, Categorical Cross-Entropy Loss function was used which
can be described by Equation 5.

L=-n_13Ni=1 ¥ =1 yilog(py) ©®)

Here, N is the number of samples in the batch, is the number of classes in the
classification problem, yyis an indicator function that is 1 if the sample i belongs to
class j and 0 otherwise, and py; is the predicted probability that sample i belongs to class
j.

3.4  Result & discussions

3.4.1 Ablation Study

Table 3. Ablation study to build a CNN-based framework to get higher performance

Architecture Convolutional Pooling Dense Accuracy (%)
CPD 5x5 3x3 256 81.54
CCPPDD 5x5, 3x3 3x3, 2x2 256,128 84.02
CPPDD 3x3 2x2, 2x2 256, 128 85.05
CCPDD 5x5, 3x3 3x3 256, 128 79.52
CCPPD 3x3, 5x5 3x3, 2x2 256 86.35
C5P3D2 5x5,3x3,3x3,3x3,3x3 | 2x2, 3x3, 2x2 128,15 94.95




We performed a rigorous experiment to establish a suitable framework for our problem.
We have used different combinations of convolutional, pooling, and dense layers along
with the different dimensional filters. In Table 3 the outcome of these experiments is
tabulated considering 8:2 train-test set, batch size of 32, and 100 epoch trial runs.
Finally, C5P3D2 architecture was considered for our work.

3.4.2 Our results

In Table 4 the performance of our C5P3D2 architecture was measured by changing the

epoch values of 20, 50, and 100 for different train-test ratios and batch size of 32 at the
beginning. The maximum accuracy of 94.95% has been obtained by running 100 epochs
in 80:20 ratios. Considering 100 epochs, the rest of the experiments were performed. In
Fig. 3 and 4 represents the training performance of C5P3D2 architecture with training and
validation curve.

Table 4. The accuracies for different train-test ratios for 20, 50 and 100 epochs run

Train-test Ratio Epoch Accuracy (%)
20 77.58
80:20 50 94.00
100 94.95
20 93.76
70:20 50 94.45
100 94.62
20 91.85
60:40 50 92.43
100 94.13

From Table 5 it is observed that in 100 epochs the highest accuracy and precision are
obtained 94.95% and 94.94%, respectively. So, we keep this epoch constant for the rest
of our experiment. Considering the epoch value as 100 and batch size 32, different train-
test ratios were considered. We further investigated by changing the batch size of 32,
64, and 128 considering the 100 epochs and 80:20 train-test ratio which is tabulated in
Table 6. It is seen that there are improvements in accuracy, precision, recall, and f-score,
respectively. The train-test accuracy and loss curves for 100 epochs 128 batch size and
80:20 train test ratio are shown in Figs. 3 (a) and (b), respectively.

Table 5. For the 8:2 train-test ratio the performance measurement by changing the epochs

pochs | Accuracy Precision Recall F1-Score
20 77.85% 82.35% 77.58% 75.07%




1.0

0.8

0.6

Accuracy value

0.4

0.2

Fig. 3. Training and validation accuracy (a) and loss curves (b) for 100 epochs 128 batch size

Table 7. The confusion matrix of the highest result i.e., corresponding to the accuracy of 95.51%
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Table 6. For 100 epochs, 8:2 train-test ratio for different batch size

Batch size | Accuracy | Precision Recall F1-score
32 94.95% 94.94% 94.95% 94.91%
64 95.41% 95.43% 95.41% 94.46%
128 95.51% 95.51% 95.24% 95.47%
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} 0.4
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g 02 i
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and 80:20 train test ratio.

for 128 batch size in 100 epochs of our proposed model is presented.

PbBs | Pbh | PEb | PLb | Ph | TBs | TEb | TLb | TLM | TSIs | TSmTssm | TTS | TTYCV | TTmv | Th
PbBs 185 5 0 X 0 1 0 0 0 5, 0 1 0 0 0
Pbh 1 292 0 0 0 0 0 1 0 1 0 0 0 0 0
PEb 0 0 195 | 1 0 0 0 4 0 0 0 0 0 0 0
PLb 0 0 1 [193| 0 Y] 0o 6 0 Y] 0 0 0 ] 0
Ph 0 0 0 5 25| 0 0 0 0 0 0 0 0 0 0
TBs 0 0 0 1 0 ]417] 1 1 0 1 0 0 4 0 0
TEb 1 0 4: 1 0 6 | 156 | 16 1 2 0 12 4 0 0
TLb 1 2 4 3 0 0 7 362 3 0 0 1 3 0 0
™ 2 0 0 0 0 0 0 3 177 1 i} 0 0 0 0
TSls 1 1 2 ak 0 2 5 3 7 330 0 1 0 1 0
TSmTssm 0 0 0 T 0 0 1 0 0 0 321 11 0 i1 0
TTs 0 0 0 1 1 1 1 ] 2] 5 10 257 0 3k 1
TTYCV 0 0 0 0 0 2 0 2 0 0 2 0 635 o 0
TTmv 0 0 0 0 0 0 0 0 0 0 0 0 0 74 0
Th 0 0 0 0 0 0 0 0 0 0 0 1 0 0 317

Here full names corresponding to the acronyms are:

PbBs=Peeper_bell_Bacterial_spot, Pbh=Peeper_bell_healthy,
PEb=Potato_Early blight,

PLb=Poato_Late blight,

Ph=Potato_healthy,
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TBs=Tomato_Bacterial_spot, TEb=Tomato_Early blight,
TLb=Tomato_Late blight, TLM=Tomato_Leaf Mold,
Tls=Tomato_Septoria_leaf spot,
TSmTssm=Tomato_Spider_mites_Two_spotted_spider_mites,
TTs=Tomato_Target_Spot,
TTYCV=Tomato_Tomato_YellowLeaf Curl_Virus,
TTmv=Tomato_Tomato_mosaic_virus,

Th= Tomato_healthy.

It is observed from the confusion matrix shown in (Table 7). that for the class PbBs, 185
instances are correctly classified, 292 instances are correctly classified for Pbh,, 195
instances are correctly classified for Potato_Eb, 193 instances are correctly classified for
PLb, 25 instances are correctly classified for Ph, 417 instances are correctly classified for
TBs, 156 instances are correctly classified for TEB, 362 instances are correctly classified
for TLb, 177 instances are correctly classified for TLM, 330 instances are correctly
classified for TSls, 321 instances are correctly classified for TSmTssm, 257 instances are
correctly classified for TTS, 635 instances are correctly classified for TTYCV, 74
instances are correctly classified for TTmv and 317 instances are correctly classified.

3.4.3 Testing the model with external data

In the testing phase, we evaluated external images, and as shown in Fig. 4, the model
accurately classified a "Pepper bell healthy" image. This classification aligns perfectly with
the ground truth observation, as expected.

Prediction: Pepper__bell___healthy

Fig. 4. Pepper bell healthy image tested using C5P3D2 architecture.

344 Comparison

Our C5P3D2-based approach for plant disease detection demonstrates competitive
results compared to other studies. Which is presented in Table 8. While Prajwala TM
etal. [17] achieved 94-95% accuracy with a LeNet variant for tomato leaves, our model,
which extends to multiple plants, shows a gain in accuracy of more than 1%. Salih et
al.'s [18] CNN model yielded a gain in accuracy of less than 1%, despite using several
levels of deep learning approaches. Basavaiah and Anthony's [19] multi-feature fusion
method did not achieve a significant improvement in accuracy compared to our
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approach. It is seen that our method produced 18.5% higher accuracy compared to the
MobileNetV4.

Table 8. Comparison of our method with standard CNN on PlantVillage dataset

Methods Accuracy Recall Precision F1-Score
VGG-16 52.50% 51.50% 50.02% 52.49%
MobileNetV3 71.40% 56.10% 70.41% 82.43%
MobileNetV4 77.01% 66.05% 65.02% 66.50%
Proposed 95.51% 95.51% 94.24% 95.47%

4 Conclusion & Future Scope

We have designed a C5P3D2 framework for the detection of plant diseases in pepper
bell, tomato, and potato leaves. The system successfully takes image inputs from the
user and provides output indicating the detected disease. This enables farmers to take
appropriate preventive measures and use the correct pesticides. This proposed
framework can be extended to other crops that suffer from diseases, given the
availability of a sufficiently large dataset for that specific crop. In the future, we will
consider improving the performance of the method by utilizing more advanced deep
learning-based techniques. We plan to deploy the system as a GUI-based platform. The
web interface may also include a forum for farmers to discuss the current trends they
face in different diseases. The future of plant disease detection using CNNs involves
expanding and di-versifying training datasets, optimizing CNN architectures for
enhanced performance, integrating real-time monitoring technologies, exploring
multimodal analysis techniques, improving the interpretability of CNN models, and
addressing practical challenges for widespread deployment in agricultural settings.
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