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Abstract

This review provides a comprehensive synthesis of the coupled effect of temperature and
solar radiation on photovoltaic (PV) module performance and lifespan. Although numer-
ous investigations have examined these stressors in themselves, this research addresses
their interrelationship and evaluates the way climatic conditions affect short-term perfor-
mance fluctuation and long-term degradation mechanisms. The assessment consolidates
outcomes from model strategies, laboratory tests, and field monitoring studies. Through the
presentation of these findings in a narrative form, the paper identifies recurring difficulties
in terms of the absence of shared assessment metrics and the low level of standardisation of
long-term test regimes. Second, it underlines the importance of predictive modelling and
live monitoring as important management tools for coupled stressors. Finally, the review
points out research gaps and underscores future research avenues, including ongoing
work towards the development of a coupling index, a composite measure being piloted in
individual studies, and advancements in materials technology, predictive methodology,
and durability testing.

Keywords: photovoltaic panels; temperature; solar radiation; long-term exposure;
comprehensive review

1. Introduction
Globally, photovoltaic renewable energy plays an important role in mitigating the

adverse effects of fossil fuel extraction. There has been an exponential rise in interest in
green energy in recent years [1] through solar photovoltaic technology and due to increased
efficiency in recent times and also due to large-scale production at reduced costs, easy
installation, and lower maintenance costs [1,2].

It is noted that the photovoltaic technology market is experiencing significant
growth [3]; from 2010 to 2019 alone, the global installed capacity increased from 40.3 GW
to 580.2 GW [4], and in 2022, the installed solar energy capacity reached 1185 GW, with
photovoltaics accounting for 70% of total additions, which is around 348 GW [5]. According
to experts’ projections, the world must install more than 75 TW of photovoltaic energy
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by 2050 to achieve its climate decarbonization targets [6]. Crystalline silicon (c-Si) photo-
voltaic technology has a conversion efficiency of 27.6% [7], which highlights the need for
improvement in order to ensure greater competitiveness [8].

As photovoltaic systems spread worldwide, uncertainties regarding their long-term
reliability and performance under various climates are also growing [9]. It is extremely
important to predict the energy yield of photovoltaic systems over their life cycle to
understand degradation rates [10], as well as many underlying factors that impact their
efficiency, such as meteorological parameters [11], particularly solar radiation, ambient
temperature, dust storms, wind speed [3], the effect of shading, orientation, and the
geographical location of solar panels [12].

It has also been shown that climatic stresses can lead to degradation through hydroly-
sis, thermomechanical degradation, photodegradation, and the rate at which degradation
occurs when temperature, humidity, and ultraviolet irradiation are combined [9]. The
factors affecting the efficiency of photovoltaic systems are shown in Figure 1.

 
Figure 1. Factors impacting the efficiency of PV systems.

Experiments conducted in open spaces [13], be it accelerated or lengthy and labo-
rious [14], help to reduce degradation rates in photovoltaic systems as well as potential
failures, as they provide information on performance throughout the life cycle [13]. Cli-
matic and environmental conditions [11,15,16] are the main causes of the degradation of
photovoltaic modules over their useful life cycle [17,18]. Degradation rate is one of the
main variables that has influenced the price of electricity for photovoltaic systems over a
25-year life cycle, with some manufacturers designing a 30-year service life as a way to
reverse the issue [19].

The solar cell has multiple equivalent electrical circuits, comprising mainly the single
diode model, which is defined by five parameters (Iph, Isd, n, Rs, Rsh) [20–22]. The degra-
dation of the photovoltaic cell affects its I–V characteristic, which eventually influences the
five parameters of the solar cell [14,23], proving the dependence of these parameters on the
long-term effect of temperature and radiation. Several researchers have discussed at length
the influence of temperature on the operating characteristics of photovoltaic modules [24].

A variety of techniques are used to detect defects in photovoltaic modules, such as
electrical characterisation, electroluminescence (EL), visual inspection, thermal imaging,
and electrical insulation testing [25]. Statistical techniques used to estimate the degradation
rate include linear regression (LE), ordinary least squares (OLS), locally weighted scatter-
plot smoothing (LOESS), classical seasonal decomposition (CSD), year-over-year (YOY)
and robust principal component analysis, and integrated autoregressive moving average
(ARIMA) [26–28].

This article presents an analytical approach to various studies on the effects of the
relationship between temperature and solar radiation on the performance and conversion
efficiency of photovoltaic solar modules. At the same time, it highlights environmental
factors and provides tools that quantify thermal and solar radiation fluctuations, seeking a
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futuristic view of trends and highlighting various technological strategies and innovative
solutions for mitigating the effects of these parameters on solar systems subject to diverse
environmental conditions.

2. Fundamentals of Solar Cell Operation
2.1. Characteristic I–V Curves

A solar cell operates based on the photoelectric effect, in which the solar radiation
of a particular frequency is absorbed in an intrinsic region, resulting in an electron–hole
pair. Due to the presence of the electric field forces of the p–n junction, they are directed to
opposite sides, creating a high potential difference in the semiconductor [29,30].

To describe the operating principle of a solar cell, a model in the form of an equivalent
electrical circuit is generally used, comprising mainly the single diode model (SDM) [31]
and the double diode model (DDM) [22], which illustrates the non-linear P–V characteristics
and I–V characteristics [32,33]. These models are configured to contain a diode (Isd, n) or
two (Isd1, n1, Isd2, n2) in parallel with a shunt resistance (Rsh) to understand the effect
of PN junction leakage current, and associated with a series resistance (Rs) to consider its
internal resistance, and with a photogenerated current (Iph), as shown in Figure 2 [34–36].

  

Figure 2. Equivalent circuit of the single diode and double diode models for PV cell.

The general characteristic equations for a photovoltaic device using the equivalent
electrical circuits of the single diode and double diode models are given, respectively, by
the following equations [20,36]:

IL = Iph − Isd

[
exp

(
VL + IL × Rs

nVt

)
− 1

]
− VL + IL × Rs

Rsh
, (1)

IL = Iph − Isd1

[
exp

(
VL + IL × Rs

n1Vt

)
− 1

]
− Isd2

[
exp

(
VL + IL × Rs

n2Vt

)
− 1

]
− VL + IL × Rs

Rsh
, (2)

where VL is the cell output voltage. Isd, Isd1, Isd2 are the saturation currents; n, n1, and n2
are the ideal diode factors. Vt = kT/q represents the junction thermal voltage, which
is expressed in function of k the Boltzmann’s constant, q the electron charge, and T
the temperature.

To extract the parameters of the characteristic curve in the SDM, it is necessary to
create an objective function to verify the congruence of the established model with the real
model [32]; and to facilitate, in several cases, an approximation or adjustment is performed
to simplify the complexity of the problem, since the output current and photovoltaic
equations do not follow a linear relationship and are implied [37]. The accuracy of various
methods in the SDM depends on the precision of the approximations, simplifications,
adjustment algorithm, and initial inputs fed into the algorithm. The extraction scheme is
also affected by measurement accuracy and errors incorporated in numerical differentiation
and by the error function defined by the operator [37].
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2.2. Main Photovoltaic Technologies

The main photovoltaic solar technologies can be classified based on their materials and
production technology, and in this case can be categorised according to their technological
progress over time, as shown in Figure 3.

 

Figure 3. Classification of solar technology [38–44].

3. Effects of Temperature on the Performance of Photovoltaic Modules
Temperature variation has a significant impact on the electrical properties of photo-

voltaic cells, influencing performance control and efficiency [45]. The band gap is atten-
uated with increasing temperature, causing an increase in electron energy at very high
temperatures [46].

The operating temperature of the photovoltaic module is defined by the energy balance,
where the absorbed solar energy is partially converted into thermal energy (which is
dissipated by the heat transfer mechanism adjustment) and partially into electrical energy
that will be removed from the cell through the external circuit. The photovoltaic energy
balance can be expressed mathematically as follows [47]:

(τα)GT = ηcGT + UL(Tc − Ta), (3)

where
τα—effective transmittance–absorption product on and from the photovoltaic panel

[%].
GT—solar radiation hitting the photovoltaic panel [kW/m2].
ηc—electrical conversion efficiency of the photovoltaic array [%].
UL—heat transfer coefficient to the surrounding environment [kW/m2 ◦C].
Tc—photovoltaic cell temperature [◦C].
Ta—ambient temperature [◦C].
Solving Equation (3) for the cell temperature, we obtain

Tc = Ta + GT

(
τα

UL

)(
1 − ηc

τα

)
, (4)
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As it is difficult to measure the parameter
(

τα
UL

)
directly, manufacturers chose to

present the nominal operating temperature of the cell (NOCT), cell or module temperature,
resulting from an incident radiation of 800 W/m2, ambient temperature of 20 ◦C, with a
wind speed of 1 m/s, and operation without load (ηc = 0) [47]. Under NOCT conditions,
we can express the equation as follows:

(τα)GT,NOCT = UL,NOCT(Tc,NOCT − Tc,NOCT), (5)

The cell temperature can be determined at any ambient temperature using the follow-
ing expression:

Tc − Ta

TC,NOCT − Ta,NOCT
=

GT
GNOCT

UL,NOCT

UL

[
1 − ηc

(τα)

]
, (6)

Tc = Ta +

(
GT

GNOCT

)(
UL,NOCT

UL

)
(TC,NOCT − Ta,NOCT)

[
1 − ηc

(τα)

]
, (7)

where GNOCT—solar radiation for which NOCT is defined [0.8 kW/m2].
Ta,NOCT—ambient temperature at which NOCT is defined [20 ◦C].
TC, NOCT—nominal operating temperature of the cell [◦C].
Assuming an estimate of 0.9 for the product (τα) and because the term ηc

(τα)
is small

in comparison with the unit, knowing that Equation (7) does not take into account the
variation in cell temperature with wind speed, an approximation can be made by replacing
the term with the convection coefficient under the conditions (h) NOCT and under the
actual operating conditions, being [47]

h = 5.7 + 3.8 V, (8)

then,
Tc − Ta

TC,NOCT − Ta,NOCT
=

GT
GNOCT

9.5
(5.7 + 3.8V)

[
1 − ηc

(τα)

]
, (9)

3.1. Impact of Temperature Variation on Photovoltaic Cells

The main impact of temperature variation is on the saturation current, as it is asso-
ciated with the intrinsic concentration of carriers, which causes the VOC to decrease as
the temperature increases. The dependence of this parameter on band gap energy means
that smaller band gaps result in a higher concentration of intrinsic carriers. Furthermore,
the energy of the carriers also plays an important role, since high temperatures cause an
increase in the concentration of intrinsic carriers [48]. The overall efficiency of the cell
tends to decrease with high temperatures, affecting the FF due to resistive losses within the
cell [49].

It has been established that the output power of a photovoltaic solar module can
decrease by approximately 0.4 W for every degree Celsius increase in temperature, which
demonstrates the close dependence between energy conversion efficiency and tempera-
ture [50], exacerbated in climates with high temperatures where performance can decrease
even further due to thermal losses and reduced VOC [51].

This relationship between the electrical performance of photovoltaic cells and temper-
ature is described by temperature coefficients, which quantify the decrease in efficiency as
temperature increases [52].

3.2. Temperature Coefficient

The specific value of the temperature coefficient not only depends on the material
used in the production of photovoltaic solar cells, but is also associated with the reference
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temperature [53], i.e., the fundamental loss mechanisms and additional losses are depen-
dent on the temperature of the device, and the efficiency of the modules is a function of
temperature. The temperature coefficients of short-circuit current density (α), output power
(γ), and open-circuit voltage (β) are normally analysed, with the latter being responsible
for the overall temperature sensitivity of solar cells [54,55]. In general, the temperature
coefficients are given by the following equations [56–58]:

β =
1

Voc

dVoc

dT
=

1
Voc

1
Tc

(
Voc −

Eg(0)

q
− γr

kTc

q

)
, (10)

where γr represents the recombination processes in the cell, and Eg(0) is the bandgap of the
semiconductor linearly extrapolated to a temperature of 0 K.

α =
1
Isc

dIsc

dT
=

1
Isc,ideal

dIsc,ideal

dEg

dEg

dT
+

1
fc

d f c
dT

, (11)

where fc is the collection fraction

δ =
1

FF
dFF
dT

= (1 − 1.02FFo)

(
1

Voc

dVoc

dT
− 1

T

)
− Rs(

Voc
Isc

− Rs

)( 1
Rs

dRs

dT

)
, (12)

FFo =
Voc − ln(Voc + 0.72)

Voc + 1
, (13)

In the photovoltaic module performance research, the maximum power coefficient
is used to correct the module power. And as the variation in parameters (Voc, Isc, FF)
is approximately linear with temperature, the theoretical value of the coefficient can be
determined by separating its sensitivity to temperature from the module performance by
adding the respective coefficients [56,59].

γ = β + α + δ, (14)

The table below shows the temperature coefficients of different solar technologies
based on certain research, where it can be seen that solar cells with technologies based
on monocrystalline and polycrystalline silicon have high values, justified by their low
efficiency at high temperatures when compared to others. Since thin-film cells have rela-
tively low coefficients, it makes them more stable in hot climates; with heterojunction cells
and perovskites having the best thermal stability, it makes them more promising for new
applications in hot climates.

Comparing temperature coefficients in Table 1 reveals varying trends for PV tech-
nologies. Conventional crystalline silicon modules (polycrystalline and monocrystalline)
are most sensitive (−0.44 to −0.50%/◦C), which explains their commonly reported
temperature-influenced losses in thermal performance at high temperatures. Amorphous
silicon products are less sensitive (−0.20 to −0.23%/◦C), although overall efficiency is poor
and the response is counteracting VOC and JSC shifts. Heterojunction cells are in an inter-
mediate band (−0.26 to −0.32%/◦C) with structural stability and high VOC advantages,
and these improve the cells’ resistance to thermal stress. Among the thin-film options,
CIGS modules degrade from −0.32 to −0.36%/◦C, whereas CdTe modules are superior
at −0.23 to −0.28%/◦C and hence well adapted to high-temperature regions. Perovskite
solar cells demonstrate the lowest reported coefficients (−0.08 to −0.17%/◦C), which show
great thermal potential but remain subject to the constraint of lower long-term stability
in practical implementation. These comparisons as a group demonstrate the trade-offs
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among maturity, efficiency, and thermal stability, and the need for a material innovation
and durability strategy particularly adapted to these requirements.

Table 1. Solar cell temperature coefficients.

Solar Technology Temp. of Coef. [%/◦C] Observation

Monocrystalline Silicon (c-Si) −0.44 till −0.50 [60] With increasing temperature, efficiency decreases due
to reduction in VOC and FF [61,62].

Polycrystalline Silicon (p-Si) −0.44 till −0.48 [61]
The decrease in performance is attributed to the

increase in series resistance and the decrease in shunt
resistance with increasing temperature [63].

Amporphous Silicon (a-Si) −0.20 till −0.234
[64,65]

Efficiency decreases significantly with increasing
temperature, and it is interesting to note that VOC

decreases while JSC shows the opposite trend,
increasing slightly, making the interaction between

temperature and overall efficiency more complex [66].

Heterojunction (HTJ) −0.26 till −0.32 [64,67]

They benefit from low processing temperatures,
contributing to reduced degradation and improved
temperature coefficients [68], which leads to high
VOCs, improving overall performance [69]; and

performance is also influenced by its microstructure
and surface morphology, affecting thermal stability

and efficiency [70].

Copper Indium Gallium
Selenide (CIGS) −0.32 till −0.36 [60,64]

Although their performance remains relatively stable
in the face of rising temperatures, they suffer
efficiency losses due to thermal effects [71].

Cadmium Telluride (CdTe) −0.23 till −0.28
[64,72]

Moderate temperature sensitivity makes it suitable for
high-temperature environments, although efficiency
decreases as temperature increases [73], with it being
less sensitive to temperature fluctuations than many

photovoltaic materials [74].

Perovskite Solar Cells −0.08 till −0.17
[75,76]

They can maintain better efficiency, although their
performance may vary depending on the composition

of the perovskite and the architecture [77].

3.3. Thermal Modelling

The temperature variation in a module can be treated as a statistical function, but as it
changes abruptly, the effect of the material’s thermal capacity cannot be ruled out because
it affects the temperature variation in relation to the output parameters [78]. This behaviour
is investigated based on the concept of thermal modelling, which helps to understand and
predict the performance of the various existing solar technologies. Thermal models for
photovoltaic cells can be divided into static models (steady states) and dynamic models [79]:

• Static or steady-state models: Assume environmental and operational conditions
(irradiance and ambient temperature) as independent parameters with respect to
time [79]. These models are widely used in research that provides an estimate of
temperature as a function of average environmental conditions such as solar radiation,
ambient temperature, and wind speed [80]. The nominal operating cell temperature
(NOCT) model is the most commonly used model in studies for simple estimates of
module temperature. It is given by the linear relationship [81,82]:

Tm = Ta +

(
G

800 W/m2

)
× (NOCT − 20 ◦C), (15)
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• Dynamic models: Consider variations in environmental conditions through differential
equations over time. Using the principle of the heat transfer mechanism [79] to
establish the total energy balance in the module [83,84], the energy balance for each
layer of material can be included in the model [85], by considering every module [86].
This total energy balance can be determined by Equation (16) [86]:

Cmod
dTmod

dt
= Qsun − Qcond − Qconv − Qrad − Pe, (16)

where Qsun represents the net solar irradiance reaching the front surface of the module.
Qcond, Qconv, Qrad are losses due to heat transfer to the environment. Pe represents the
electrical energy produced by the module.

Table 2 shows different thermal models for treating module temperature variation.

Table 2. Thermal models.

Period Authors Thermal Model

19
70

–
19

80

Ross [87] TPV = Ta + kGT

Rauschenbach [88] TPV = Ta +
GT

GNOCT
T

(
TNOCT

PV − TNOCT
a

)(
1 − ηPV

τα

)

19
80

–1
99

0

Risser e Fuentes [89] TPV = 3.81 + 0.0282 × GT1.31 × Ta − 1.65Vw

Severant [90] TPV = Ta + α(1 + βTa)(1 − γVw)GT

Schott [91] TPV = Ta + 0.028 × GT − 1

Ross e Smokler [92] TPV = Ta +
GT

GNOCT
T

(
TNOCT

PV − TNOCT
a

)

19
90

–2
00

0 Lasnier e Ang [93] TPV = 30.006 + 0.0175(GT − 300) + 1.14(T a − 25)

King [94] TPV = Ta +
GT

1000 (0.0712V2
w − 2.411Vw + 32.96)

King [95] TPV = Ta +
GT

1000 (19.6e−0.223Vw + 11.16)

20
00

–2
01

0

TamizhMani et al. [96] TPV = 0.943Ta + 0.028GT − 1.528 GT
GNOCT

T
+ 4.3

King et al. (I) [94] TPV = Ta + GTe−3.56−0.0750Vw

King et al. (II) [94] TPV = Ta + GTe−3.47−0.0594Vw

Duffie end Beckman [47] TPV = Ta +
(

9.5
5.7+3.8Vw

)
GT

GNOCT
T

(
TNOCT

PV − TNOCT
a

)(
1 − ηPV

τα

)
Chenni et al. [97] TPV = 0.943Ta + 0.028GT − 1.528Vw + 4.3

Mondol et al. [91] TPV = Ta + 0.031GT end
TPV = Ta + 0.031GT − 0.058

Faiman [98] TPV = Ta +
GT
h h = U0 + U1 × v

Skoplaki et al. (I) [99] TPV = Ta +
0.25

5.7+3.8Vw
GT

Skoplaki et al. (II) [99] TPV = Ta +
0.32

8.91+2Vw
GT

Sandia [94] TPV = Ta + GTe(a+bVw)

Mattei et al. [100] TPV =
h×Ta+GT×[ατ−η×(1+γT×Ta,STC)]

h−(γT×η×GT)

h = u0 + u1 × v
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Table 2. Cont.

Period Authors Thermal Model
20

10
–2

02
0

Mazuthik [101] TPV = 0943Ta + 0.0195GT − 1.528Vw + 03529

Ren et al. [102] TPV = Ta +
[

ατ×GT×(1−η)
h

]
h = u0 + u1 × v

Segado et al. [103] TPV = Ta + 0.022GT(1 + 0.009Ta)× (1 − 0.063 × v)

Kamuyu et al. [92] TPV = 09458Ta + 0.0215GT − 1.2376Vw + 2.0458

Duffie end Beckman [47] Tc = Ta +
(

hNOCT
h

)
GT

GNOCT

(
TNOCT − TNOCT

a
)

h = u0 + u1 × v

Jacques [82] TPV = Ta +
[

ατ×GT×(1−η)
2h

]
h = u0 + u1 × v

PVSyst [104] TPV = Ta + GT
α(1−ηm)
u0+u1×v

3.4. Experimental Studies

Temperature fluctuations have a significant effect on output parameters [17,105].
Experimental studies that have been conducted demonstrate this dependence, such as
the following:

An experimental and simulative study conducted in Malaysia, with a monocrystalline
panel under constant irradiation of 458.2 W/m2 with an operating temperature between
25◦ and 60◦, proved that the reduction in the energy gap in the solar cell is a consequence
of the increase in temperature and affects the electrical output parameters [106]. The study
shows that an increase in temperature linearly reduces Pmax and VOC causes a slight
increase in ISC, with temperatures between 25◦ and 35 ◦C being the best for solar cell
performance [106].

Another similar study was conducted in Malaysia by using the PVsyst software
to evaluate the design of the output parameters. In the experimental part, the PROVA
200 analyser was used to measure and record the electrical parameters of the module, with
sensors on the rear side to record the average temperature and a FLIR thermal camera on
the front side to capture the temperature distribution. In both methods, it was concluded
that with an increase in temperature, even with an increase in output current, there was
no efficient production of output power due to the reduction in voltage, which caused the
quality of the operation to be increasingly minimal [107].

The effect of temperature on the efficiency of the photovoltaic module was also inves-
tigated under climatic conditions in Turkey, where the photovoltaic module was placed
inside a closed glass chamber, with temperatures fixed at four values using an electric heater
and a vapour compression refrigeration cycle system coupled to a PID control mechanism
to maintain the desired temperatures. The results obtained experimentally in this configu-
ration based on several tests, regardless of the variation in the zenith angle, conclude that
as the temperature increases, the efficiency of the photovoltaic module decreases, affecting
the electrical output parameters [108].

Ebhota, W. S. and Tabakov, P.Y. [109] used an ambient temperature range between
−10 ◦C and 50 ◦C with intervals of 5 ◦C to analyse the influence on the performance of a
photovoltaic system, taking into account c-Si and CIGs technologies. The specialised soft-
ware tool PVsyst was used in the design and simulation of the 6 kW rooftop system, which
was subjected to the same conditions. The results showed that, in all three technologies,
performance is inversely proportional to ambient temperature and, at 50 ◦C, CIGs mod-
ules achieved higher temperatures compared to Si-mono and Si-poly technologies [109].
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Although CIGs modules had a higher temperature, lower module losses were recorded,
which shows that they perform better when compared to mono-Si and poly-Si technologies.

It has been estimated that the efficiency of silicon cells decreases by approximately
0.4% [110], 0.5% to 0.65% [111,112], for each increase in degree Celsius [110]. This temper-
ature sensitivity was confirmed in a study by Chander et al., with silicon cells in series
and parallel configurations showing significant variations in performance with changes
in temperature, in accordance with Kirchhoff’s laws [113]. Furthermore, Ukwenya et al.
highlight in their study that the performance of perovskite cells can be optimised by the
operating temperature, with simulation results showing a drop in performance at high
temperatures [111].

In a study by Garg and Arun, they detected an increase in energy yield with increasing
temperature, justified by certain climatic conditions where high temperatures can have a
positive impact on overall performance [114]. The impact of climatic conditions on solar cell
performance beyond temperature has been extensively studied. The interaction between
temperature, radiation, and other environmental factors further complicates the issue of
solar cell performance.

Experimental research has shown that performance can also vary depending on the
composition of the materials and the design of the cells. Nowsherwan et al. point out that
incorporating hole transport materials into organic solar cells can optimise performance under
different temperatures [115]. The study by Kumar et al. reinforces the idea that as the surface
temperature of photovoltaic modules increases, there is a noticeable drop in their performance,
demonstrating the importance of thermal management in solar photovoltaic systems [116].

4. Effect of Solar Radiation on the Performance of Solar Modules
Solar radiation is a critical factor that directly influences the performance of photo-

voltaic technologies, affecting their energy production efficiency. The intensity and type of
solar radiation are related to electricity production in solar cells. Higher intensity is related
to the output power in photovoltaic solar technologies, but with a greater impact on the
current produced, as it has a minimal impact on voltage [117]. There is a direct proportional
relationship between solar radiation and output current, as well as in the efficiency of
solar panels, whereby an increase in solar radiation causes an increase in output current,
improving its efficiency. Conversely, this increase in radiation is followed by an increase in
the temperature of the photovoltaic cell, causing a negative effect on the parameters [118].
Abdel-Aziz et al. found that intense solar radiation increases cell temperature, affecting
energy conversion efficiency [119].

The panels are tested to determine their maximum efficiency under standard condi-
tions (STC) with an irradiance of 1000 W/m2 at a temperature of 25 ◦C and AM 1.5 [120].
However, in reality, there are often deviations from these standards due to adverse envi-
ronmental conditions and the location in which the panels are operated, influencing their
conversion efficiency.

Existing solar technologies react differently to the wavelengths of the solar spectrum.
For example, Hudisteanu et al., in their research, conclude that monocrystalline silicon cell
technology performs better than polycrystalline technology because of its higher performance
across a broader spectrum of sunlight [121]. Solar photovoltaic production also depends on the
spectral distribution of radiation, which can vary depending on geographical location, time
of year, and atmospheric conditions [122]. Knowledge of spectral distribution can contribute
to improving the design of photovoltaic systems, allowing manufacturers to select materials
with the capacity to maximise the capture of available solar radiation.

Recent photovoltaic solar system technologies rely on the photoconductive effect in
semiconductor materials to convert solar energy into electrical energy, which is significantly
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affected by the type and intensity of solar radiation they receive [123–125]. Understanding
the differences between the solar radiation that reaches terrestrial surfaces, mainly direct
and diffuse radiation, has a major influence on the optimisation of solar systems, as both
affect the efficiency of solar panels.

When solar radiation reaches the Earth’s atmosphere, part of its incident energy is
removed by scattering or absorption [111]. The light that travels in a straight line from
the sun to the solar panel without being scattered or absorbed by the atmosphere is called
direct radiation, while diffuse radiation is the radiation received from the sun after its
direction has been altered by scattering through the atmosphere, resulting in a soft and
uniform distribution of light [47]. To achieve high efficiency in photovoltaic solar panels,
direct solar radiation is vital, as it contributes mainly to the energy that photovoltaic cells
need to convert into electricity.

Direct radiation is most effective when solar panels are oriented towards the sun,
as they maximise the amount of energy captured and operate more efficiently if they
receive direct sunlight throughout the day [126,127]. Furthermore, Diez et al. point out
that choosing an ideal angle of inclination for the panels significantly improves their
performance by maximising the capture of direct solar radiation [128], since the angle at
which sunlight hits the solar panels significantly affects the intensity of the direct radiation
received. And with the incorporation of solar trackers, the amount of direct solar radiation
can be increased, boosting their overall energy conversion efficiency [129].

The role of direct solar radiation goes beyond simple exposure; it also interacts with
parameters such as temperature and configuration to affect the output of the photovoltaic
module [130]. The amount of solar radiation received is in line with the progress of new
solar photovoltaic technologies, increasing their energy conversion rate. This is supported by
recent technologies that use optical devices in smaller, high-efficiency solar cells to concentrate
sunlight, which increases the density of direct solar radiation and can influence conversion
efficiency that exceeds that of conventional solar technologies by a factor of several times [127].

Optimising exposure to direct solar radiation is a fundamental principle based on
the operational dynamics of photovoltaic technologies. Several studies encourage the
integration of solar-tracking technologies and ideal angles in more advanced systems in
order to maximise the capture of direct solar radiation, as this is fundamental to improving
the short-term performance and long-term sustainability of these technologies.

Unlike direct radiation, diffused solar radiation is the result of scattering by molecules
and particles in the atmosphere. It is distributed more evenly and can illuminate panels
from all directions, making it ideal in cloudy or urban environments where direct solar
radiation is obstructed by buildings [131]. Kumar et al. indicate in their research that
although diffuse radiation normally contributes less to overall energy conversion than
direct radiation, it is essential for sustaining a more consistent energy supply, particularly as
direct solar radiation fluctuates [132]. Buildings equipped with solar photovoltaic systems
integrated into their construction could, in a way, benefit from the use of diffuse radiation
through their facades and panel materials [133].

The interaction between direct and diffuse radiation contributes to the overall energy
yield in solar systems. This can be seen in systems that use bifacial solar panels because
they capture light on both sides, as they are designed to use both types of radiation in a
more optimised way. These types of panels improve overall efficiency by capturing diffuse
radiation reflected by the ground and other surrounding surfaces [134]. Optimisation to
maximise exposure to both types of radiation can be achieved by choosing the ideal angle
of inclination for the solar panels, as different angles favour direct light at a certain time of
day while also capturing diffuse radiation throughout the day [135].
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The effects discussed show that photovoltaic systems require more careful consid-
eration when exposed to the surrounding physical environment. At the same time, the
integration of advanced modelling techniques is advocated to predict how solar radia-
tion interacts with different installation layouts, enabling good design strategies for the
implementation of photovoltaic systems [136].

Solar Radiation Estimation Models

Measuring solar radiation is extremely important due to the various applications of
the information. To design a system that uses solar energy, you need extensive knowledge
about the capacity available in a given region and the amount that reaches a given surface,
which is possible through long-term measurements. However, due to the costs involved in
maintaining and calibrating the measuring devices, several studies have opted to develop
estimation methods using various factors.

Empirical models are based on astronomical, geographical, physical, and meteorologi-
cal factors [108]. In solar systems, empirical models for estimating solar radiation correlate
with meteorological factors [137] and, depending on the input parameters, can be grouped
into models based on sunlight, temperature, cloud cover, and other meteorological parame-
ters [137,138]. Notwithstanding these, there are those based on the day of the year [139].
The use of parameters in combination to create models makes correlation difficult, but in
some cases it is possible [140].

Table 3 shows the empirical models for estimating solar radiation for solar systems.

Table 3. Empirical models for estimating solar radiation for solar systems.

Models Authors/Reference Model Equation Features/Limitations

B
as

ed
on

su
nl

ig
ht

Angstrom [141] H
HC

=
[

a + b
(

S
So

)] It is a linear relationship between the average
monthly–daily radiation ratio and the clear day
radiation at the location and the insolation rate.

Angstrom and
Prescott [137]

H
Ho

=
[

a + b
(

S
So

)] Based on linear regression, it is useful in locations
with little data and dependent on the quality of the
insolation period, requiring calibration of
coefficients on site for greater accuracy and less
efficient on cloudy days.

Ögelman et al.
[142]

H
Ho

= a + b
(

S
So

)
+ c

(
S
So

)2

It incorporates a quadratic structure in the
insolation ratio, which facilitates the adjustment of
real data, basically where the relationship between
the insolation duration and radiation is not linear,
but requires calibration with local meteorological
data through statistical regression.

Glower and
McCulloch [143]

H
Ho

= acos φ + b
(

S
So

) It is a parameterisation that incorporates the
influence of the latitude of the location and the
duration of insolation to improve accuracy,
basically in diverse topographical areas and
atmospheric conditions.

Coppolino [144] H
Ho

= exp(a)
(

S
So

)b

An exponential power law dependence between
normalised solar radiation and relative duration of
insolation, which is used on horizontal surfaces,
where the constants are adjusted by the least
squares of the local meteorological data.

Ampratwum and
Dorvlo [145]

H
Ho

= a + b × log
(

S
So

)
Logarithmic transformation allows working with
large variations in solar radiation data, making it
perfect for data modelling. When the insolation
period increases, the logarithmic transformation of
the insolation ratio favours the capture of
decreasing returns in the increase in radiation.
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Table 3. Cont.

Models Authors/Reference Model Equation Features/Limitations

B
as

ed
on

te
m

pe
ra

tu
re

Bristow and
Campbell [146]

H
Ho

= a
[
1 − exp

(
−b∆TC

)] It explores the temperature range of the time of
day and the intensity of the radiation reaching
the surface.

Hargreaves [147] H
Ho

= a
√

Tmax − Tmin

It uses daily temperature extremes correlated with
solar radiation, requiring the coefficient to be
calibrated on site and in areas where there are
significant atmospheric changes so it can be
less efficient.

Annandale
et al. [148,149]

H
Ho

= a
(
1 + 2.7 × 10−5Z

)(√
Tmax − Tmin

)
It integrates the effect of reduced altitude and
atmospheric thickness into the Hargreaves–Samani
model, which makes it crucial for mountainous
regions and the intrinsic dependence of
temperature extremes on radiation estimation.

Allen [150] H
Ho

= kr
√

Tmax − Tmin

It considers Kr as a function of altitude and
clarifies the effect of elevation on the volumetric
heat capacity of the atmosphere.

Thornton and
Running [151]

H
Ho

= τt, max.τf ,max

Based on the Bristow–Campbell model, it uses the
daily and monthly temperature range to obtain the
atmospheric transmissivity coefficient.

Chen et al. [152] H
Ho

= a ln(Tmax − Tmin) + b

Based on the regression of radiation and
temperature variations, it incorporates the
logarithmic function of the daily temperature
range to reflect the effects of solar radiation on
temperature change and, because it excludes other
environmental factors, makes it less accurate in
certain regions.

Li et al. [153] H
Ho

= (a × Tmax + b × Tmin) + c

It adopts the coefficient of the Hargreaves and
Samani model as a linear function of the average
temperature in the modified Chen model and
performs best in regions where the diurnal
temperature range correlates reliably with
solar radiation.

B
as

ed
on

C
lo

ud
C

ov
er

Badeseu
[154]

H
Ho

= a + bC
H
Ho

= a + bC + cC2

H
Ho

= a + bC + cC2 + cC3

It introduces cloud cover and is based on the
brightness of the sky to estimate radiation on a
horizontal surface; and in the situation where
unusual weather conditions are encountered, it
becomes less reliable and proposes some
correlations to be more flexible in matching solar
radiation data.

Black [155] H
Ho

= a + bC + cC2

It facilitates more flexible arrangements by
including quadratic terms in cloudiness or
insolation, and is useful in locations with variable
cloud cover.

Angstrom and
Savinov [156]

H
Ho

= [1 − (1 − k)]C

It relates average cloudiness to global solar
radiation by applying the transmission of
radiation inside the clouds, depending on latitude,
and performs best in regions with a stable climate.
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Table 3. Cont.

Models Authors/Reference Model Equation Features/Limitations

B
as

ed
on

ot
he

r
pa

ra
m

et
er

s Swartman and
Ogunlade [157]

H
Ho

= a
(

S
So

)b
RHc

The non-linear model is more flexible than the
linear model when it comes to adapting to
changing environmental situations, making it
easier to incorporate local climatic conditions into
the estimation of solar radiation and is very useful
in regions where fluctuations in relative humidity
play a role.

H
Ho

= a + b
(

S
So

)
+ cRH

Hunt et al. [158] H = a(Tmax − Tmin)
0.5Ho + bTmax

+cP + dP2 + e

Multivariate and more comprehensive, it allows
for the influence of precipitation and considers the
combination of meteorological parameters that
interfere with solar radiation.

Garg and Garg [159]
H
Ho

= a + b
(

S
So

)
+ cw

w = 0.0049RH
[

exp(26.23−5416/Tk
Tk

] They present a double linear relationship for
estimating the average daily–monthly global solar
radiation, which requires the coefficients to be
calibrated on site.

5. Interaction Between Temperature and Solar Radiation and Their
Long-Term Effects

The interaction between solar radiation and temperature has a significant impact on the
performance of solar systems installed in various regions of the world, which are influenced by
different meteorological and environmental conditions. The sensitivity of solar technologies
to temperature is particularly pronounced when high levels of solar radiation are recorded,
which can lead to efficiency losses due to increased heat. The increase in open-circuit voltage
and short-circuit current is caused by increased solar radiation under variable environmental
conditions, which can create fluctuations in maximum output power (Pmax) [160]. However,
optimal performance is achieved when solar radiation reaches its peak and the temperature
on the surface of the solar panels remains low [161,162].

The performance of solar photovoltaic technologies in tropical regions, due to high
temperatures and radiation levels, can deteriorate more easily when compared to temperate
regions [163]. In Africa, where the climate is quite turbulent, ranging from arid regions to
tropical zones, the impact of solar radiation and temperature is visible in solar systems. In
these regions, the increase in extreme temperatures, exacerbated by climate change, poses
challenges for the conversion efficiency of photovoltaic systems [164].

Hudisteanu et al., in an experimental study in Asia with monocrystalline and polycrys-
talline panels under controlled conditions, demonstrated that high operating temperatures
negatively influence open-circuit voltage, reducing conversion efficiency even in situations
of high irradiance [121]. In a seasonal study, it was shown that solar radiation, even though
it is the biggest driver of solar production, when combined with high temperatures signifi-
cantly influences efficiency [165]. Choo and Wei found that solar panels can experience a
drop of about 7.5% to 22.5% in their conversion efficiency rate under conditions of excessive
heat during peak solar hours [166].

For Europe, the interaction between temperature and radiation, divided by geographi-
cal and climatic variety, is more complex. The performance of solar technologies is related
to the harmony of parameters such as solar radiation and temperature. Some regions bene-
fit from high solar irradiance combined with relatively moderate temperatures, leading
to ideal operating conditions, while other regions with high irradiance and temperature
may experience drops in efficiency, requiring specific models for performance [61,167]. For
silicon panels, when there is an increase in temperature, their efficiency decreases when
compared to other technologies under the same conditions because of the specific thermal
sensitivity that characterises them [168].
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Zhang Mingzhu, Liu Wanfu, and Qi Wuqin [165] conducted a study on the impact
of two simultaneous factors, namely temperature and radiation, on photovoltaic energy
production, based on a 1 kW independent photovoltaic production system installed at
Tianjin University of Commerce over a period of one week. Data was recorded in two ways,
firstly, using an air temperature metre and a TES-1333R Solar Power Metre for radiation,
and secondly, using averages obtained from the Meteorological Data Centre. Based on
physical systems and experimental values evaluated in SPSS and DPS and the multiple
non-linear regression analysis model, the results show that when the factors are combined,
there is a proportional trend towards higher energy production, which differs when both
factors diverge, especially when low radiation conditions are observed. This reveals that
there are optimal maximums for both in photovoltaic energy production.

Bhavani, Munipally et al. [167] conducted a simulated study in MATLAB with a produc-
tion of 100 kW, which aimed to estimate the inverter efficiency through the effects of solar
temperature and photovoltaic radiation in different climatic seasons in an on-grid system.
Overall losses were obtained through inverter efficiency, where it was possible to verify the
waveforms produced from the inverter’s efficiency, which reflected the variation in irradiation
and temperature at the inverter’s output in the on-grid system. When the ambient tempera-
ture was 47 ◦C and irradiance reached 863.5 W/m2, the inverter’s energy conversion capacity
was 0.06%, with inverter efficiency falling to 3.8%, showing in this case that its efficiency in
summer decreases and only increases slightly with the increase in irradiance.

Studies show that the combined effects of temperature and solar radiation are multi-
faceted, leading us to develop innovative techniques to integrate into photovoltaic solar
technologies in order to control or regulate adverse environmental fluctuations, so as to
maintain optimal operating standards.

5.1. I–V Curve Under Different Temperature and Irradiation Conditions

Photovoltaic solar systems can be characterised by the current and voltage (I–V) curves
they generate, which are severely influenced by temperature and solar radiation conditions.
For this reason, it is necessary to understand the extent to which these parameters affect
the performance of photovoltaic solar systems in order to optimise their design.

Temperature affects the I–V characteristics of photovoltaic solar cells, and according to
Coftas et al., the open-circuit voltage (Voc) decreases with increasing temperature, as it is
completely associated with the thermal sensitivity of the energy gap, which decreases with
increasing temperature, causing the intrinsic concentration of available carriers [61]. When
the temperature increases, the short-circuit current (Isc) shows an increasing behaviour,
while Voc shows a decreasing behaviour [169]. These effects of temperature on the I–V
characteristics are already encoded by manufacturers in the temperature coefficients of the
various solar technologies on the market.

Exposure of panels to different levels of irradiation further complicates the I–V relation-
ships in photoconductive materials. I–V curves under different irradiations, for example,
may exhibit different behaviour in some ways. Normally, high irradiance generates higher
currents, maintaining Voc values until saturation is reached with high light levels [170].
The general shape of the I–V curve can be altered by the fact that irradiance affects the effec-
tive series resistance in solar devices, presenting apparent interactions that can somewhat
confuse optimal performance analyses.

Studies conducted by He et al. prove that the interaction between temperature and
radiation leads to a considerable deviation in the I–V curves of standard test conditions
(STC), making it necessary to use high-precision sensors to locate parameters in real operat-
ing contexts [171]. The introduction of maximum power point tracking (MPPT) algorithms
is crucial in mitigating panel performance losses due to fluctuations in solar radiation
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and temperature. MPPT technologies continuously regulate the electrical load to satisfy
the maximum output power, optimising the system even in periods with unfavourable
environmental parameters [172].

Improving knowledge about the correlation between temperature and solar radiation
in I–V characteristics in various solar technologies is a crucial factor in optimising solar
systems. In practice, it is essential to use on-site measurements that help in the development
of I–V curve plots, which facilitate more accurate and rapid recognition of the parameters
of a solar panel [173], or even incorporate advanced methods that use non-contact mea-
surement practices for temperature and radiation, enabling real-time monitoring of I–V
characteristics [174], resulting in a diagnosis that adjusts for fluctuations in environmental
parameters in operational situations.

5.2. Theoretical and Experimental Models

The combination of theoretical and experimental models, or models that integrate
theoretical insights with experimental approaches to radiation and temperature applied to
photovoltaic systems, is extremely important, as these parameters have a direct influence on
efficiency and production. And when incorporated into models that study the variation in
temperature resulting from the absorption of solar radiation intensity on different surfaces,
they can help monitor and prevent the accuracy of solar photovoltaic system performance.
The following Table 4 illustrates some studies.

Table 4. Studies with theoretical and experimental models.

Reference Description

[175]
In this study, the relationship between temperature and solar radiation intensity was examined,
emphasising that when solar radiation exceeds 3 kW/m2, it correlates with the performance of the
solar system due to the influence of temperature.

[176]

This study discussed the challenges to the efficiency of photovoltaic systems related to radiation
intensity and temperature, focusing on MPPT and the issue of shading, using a theoretical model
where the results of the Honey Badger Optimisation Algorithm (HBO) are compared with
conventional methods such as Perturb and Observe (P&O), Whale Optimisation Algorithm (WOA),
and Flying Squirrel Search Optimisation (FSSO), using MATLAB.

[177] This study estimates the efficiency of solar cells influenced by temperature and solar radiation
parameters using computational models with single and double diode configurations.

[178]
This study explains how the variation in the output power of photovoltaic solar panels is affected
by the direct relationship between solar radiation intensity and temperature, using the Elman
theoretical model.

[179]
They refine thermal management strategies using an experimental and theoretical model through
numerical modelling of temperature distributions in photovoltaic modules, validating them with
experimental measurements.

[180]
To demonstrate the prediction of production efficiency in photovoltaic systems, an experimental
and theoretical method was used, integrating artificial neural networks in modelling the
relationship between temperature and solar radiation intensity.

[181]
To evaluate more efficient monitoring of temperature and solar radiation, the authors used
interpolation techniques, demonstrating the importance of these parameters in the output power of
solar panels.

[182]
To help understand and optimise production in photovoltaic systems, models that integrate
variations in solar radiation intensity and cell temperature have been developed to study the
dynamics of solar radiation and its impact on photovoltaic solar energy production.



Energies 2025, 18, 5072 17 of 33

Table 4. Cont.

Reference Description

[183]
They emphasise the application of mathematical models to estimate the energy production
generated by solar photovoltaic systems, using historical radiation and temperature data, and in a
way serving to aid in forecasting.

[184]
They use experimental tests, through modelling the impacts of solar radiation, to assess the
performance of photovoltaic modules, adjusting theoretical modelling approaches to prevent
photovoltaic solar energy production.

The conclusions of various studies involving model development demonstrate the
relevance of applying them to solar technologies for understanding the solar radiation–
temperature relationship, as well as for monitoring and preventing performance losses and
improving the efficiency of solar systems. Theoretical models play an important role in
understanding radiation intensity and its effects on temperature, which in turn highlights
the importance of using empirical data to validate predictions, thereby increasing model
effectiveness. On the experimental side, the relationship between these parameters can be
assessed through direct measurements and statistical regressions. The combination of these
models provides a more robust framework for analysing these factors.

One of the most notable trends in the quantitative development of technology, taking
crystalline silicon cells as an example and using efficiency as the performance index metric,
is that in recent decades there have been major advances in overall performance, represent-
ing world market dominance in photovoltaic solar energy. Efficiency in 1978 was around
12% and has evolved to 27.8% today [38].

This significant evolution was due to the introduction of innovations, starting with the
Passivated Emitter Rear Cell (PERC) format and Interdigitated Back Contacts (IBCs), which
substantially reduce recombination losses [185]. The incorporation of silicon heterojunction
further boosted efficiency, and new trends were also applied to cells, such as polycrystalline
silicon on oxide (POLO), the ion implantation technique and tunnel oxide passivating
contacts (TopCon) [186], and bifacial technology.

Recent studies propose light management and anti-reflective coatings to increase
conversion rates, thereby extending the limits of current efficiency [187]. The continu-
ous refinement of production mechanisms, the integration of advanced materials, the
improvement of physical properties, and doping make the evolutionary trajectory of silicon
technology more robust in the solar photovoltaic energy market.

5.3. Photochemical Degradation and Long-Term Effects of Temperature and Radiation

Long-term performance, efficiency and durabilty of photovoltaic panel technolgies are
important issues to address long-term energy policies and economical investments axed on
sustainibilty. Therefore, it is necessary to understand the long-term effects of exposure to
high temperatures, as they respond differently to thermal stress. Much attention has been
given to research highlighting the detrimental impact on the longevity of panels due to
their exposure to high temperatures.

The long-term exposure of the panels is contextualised by slow production losses
during their operational lifespan, which is generally between 25 and 30 years, caused
by continuous thermal stresses, which lead to degradation and manifest themselves in a
progressive loss of performance estimated at 0.5 to 1% per year, and which are associated
with the cumulative ageing of materials [188]. While short-term exposure of the panels is
characterised by infrequent thermal events with immediate consequences related to load
peaks or rapid environmental stresses such as temperatures close to the phase transition
temperature, which cause very sudden changes and can cause degradation through a single
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factor, namely an increase in temperature [189]. The degradation of solar panels due to
long-term exposure is a cumulative process that requires the entire thermal history, while
changes due to short-term exposure are concentrated at the upper end of the temperature
distribution curve [189].

The longevity of photovoltaic solar panels is compromised in some ways when they are
subjected to high temperatures, aggravating the degradation of materials, such as physical
and chemical changes in the module components, such as microcracks, and delamination
characterised by loss of adhesion in the encapsulation and rear sheets, which can cause a
shorter operational life [24,190,191].

At ambient temperatures of around 85 ◦C, it can affect output power, reducing it
by almost 30% due to the increase in panel temperature [192,193]. Liu et al. suggest
that in crystalline silicon panels, a 10 ◦C increase in operating temperature can lead to a
doubling of the degradation rate, due to the critical influence of thermal conditions on
solar photovoltaic performance, as well as aggravating the urban heat island effect in large
installations [24].

The consequences of high temperatures go beyond direct efficiency losses. The use of
materials that mitigate losses, such as phase change materials (PCMs), tend to reduce energy
losses caused by high operating temperatures, as they reduce the operating temperature of
solar panels by around 7 ◦C, introducing uniformity in cell temperature [194].

The impact of solar radiation on the photochemical degradation of solar panels is a
constant concern for researchers, as it is a decisive factor in the longevity and efficiency of
photovoltaic solar systems. The photochemical degradation of solar panels is understood as
the deterioration of materials caused by chemical reactions induced by the exposure to light,
particularly in the presence of ultraviolet (UV) radiation, causing changes in the molecular
structure of components [195,196]. In general, this exposure to solar radiation has an
impact on photostability, triggering photochemical reactions, altering their photophysical
properties and introducing additional traps and recombination sites, leading to a reduction
in energy production efficiency over the long term [195,197].

Specific degradation processes may differ due to the various solar technologies used.
Organic-based technologies are susceptible to photochemical degradation due to their de-
pendence on organic materials that can undergo bond breaking under high-energy photon
irradiation [198]. Manser et al. highlight that panels based on metal halide perovskites are
praised for their efficiency but are vulnerable to environmental stress factors, including
ultraviolet radiation, heat, and humidity [199]. Similarly, the stability of organic–inorganic
hybrid perovskites is compromised by prolonged exposure to light, which can considerably
vary their output characteristics, thus affecting their overall performance [200]. This differs
from silicon-based technologies, which have different degradation rates, predominantly
influenced by environmental factors and installation conditions [201]. Several studies
demonstrate the dependence of degradation rates on the light spectrum, operating tem-
perature, and characteristics of the materials used [196], which can vary in the order of
average rates of −0.4% till −2% per year, although these may be exacerbated in adverse
environmental conditions in different regions [202].

Environmental factors such as temperature fluctuations, humidity, and dust accumula-
tion can exacerbate degradation by ultraviolet rays due to interaction with photochemical
degradation. The presence of dust not only reduces the efficiency of the panel by obstruct-
ing direct sunlight, but can also cause hot spots, which in turn increase degradation rates
when combined with exposure to ultraviolet radiation [203].

The impact of UV radiation on photovoltaic solar panels goes beyond visible degra-
dation; it has notable effects on long-term energy production. There is a need to create
strategies to protect against UV-induced degradation, such as the use of nanocomposite
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coatings (zinc oxide), which have been shown to mitigate the effects of photochemical
degradation [204]. Praveena et al. emphasise that the continuous evaluation of emerg-
ing technologies and materials is fundamental to maximising the efficiency of solar cells,
prolonging their operational life cycle in real-world situations [205].

The degradation discussed from a photochemical perspective helps to improve the
resilience of existing solar technologies against environmental stresses, thus ensuring their
viability and performance in the short and long term. As argued by Patil et al., degradation
significantly influences efficiency and, naturally, overall sustainability when these technolo-
gies are subjected to solar radiation over time [206]. Ultimately, progress in solar energy
sustainability depends on more comprehensive analyses, considering environmental and
economic aspects, to aid decision-making in solar photovoltaic projects [207,208].

6. Technological Perspectives and Mitigating Solutions for the Effects of
Temperature and Radiation

To mitigate the effects of temperature and solar radiation intensity on solar photo-
voltaic systems, it is important to integrate advanced technologies and innovative solu-
tions. Methods such as phase change materials, cooling technologies, coating technolo-
gies, bifacial technologies, and other advanced technologies can be used for thermal and
radiation management.

Cooling systems can be active or passive [110], which aims to improve the efficiency
and performance of photovoltaic systems under high operating temperatures, where the
reduction in solar cell temperature through active cooling can be up to 7.5 ◦C greater than
than through passive cooling [110]. Active cooling incorporates mechanical or electrical
components to directly remove heat from photovoltaic panels. However, relying on addi-
tional energy for these systems can lead to a decrease in overall system efficiency, as the
energy required for operation can offset some of the gains obtained through cooling. Hy-
brid systems that are described use forced ventilation by fans or water to maintain optimal
temperatures [209], and can also use residual heat in thermal applications, contributing
positively to the overall efficiency of the system if well executed [210].

Systems that use microchannel heat sinks through nanofluids are gaining greater
prominence for their thermal management efficiency in photovoltaic systems. Silicon
carbide (SiC) nanofluids present better thermal efficiency performance when compared to
common coolants such as pure water and aqueous alumina, standing out for their particle
type in the heat transfer dynamics in microchannels [211]. This confirms previous studies
that show that nanoparticles in nanofluids help reduce thermal resistance by decreasing
temperature differences in configurations that use microchannels, improving heat transfer
efficiency with fluids by approximately 10% [212].

Systems that use passive cooling generally utilise natural phenomena to improve
thermal management, thus avoiding additional energy consumption. These systems use
heat sinks, phase change materials, and natural convection [213].

In a comparative analysis, while systems that use active cooling immediately balance
the temperature, improving performance, passive cooling stands out for its low operating
costs and energy independence. The table below shows several strategies coupled with dif-
ferent technologies to mitigate the effects of temperature and radiation on the performance
of photovoltaic systems.



Energies 2025, 18, 5072 20 of 33

Table 5. Technological strategies and solutions to mitigate the effects of temperature and solar radiation.

Technologies

Technique/Type Description Results Reference

Passive cooling

They use natural convection or
radiation, such as fins or
reflective materials, for
heat dissipation.

They increase efficiency and can
reduce operating temperatures, but
are less efficient than
active systems.

[214,215]

Active cooling

With the aid of water pumps,
fans or even evaporative
cooling, they actively remove
heat from photovoltaic
solar modules.

Efficiency and output power in
high temperature conditions are
improved when cooling begins at
the maximum permitted
temperature, reducing the
temperature by an average of
18.26% and increasing energy
production by 10.14% when used in
conjunction with reflectors.

[216]

Heat pipe cooling

They are passive devices that
use the vapour–liquid phase
change process in thermal
management, with high
thermal conductivity.

Maintains the operating
temperatures of photovoltaic
systems, leading to improved
efficiency even under high
radiation rates, and when
combined with other technologies,
increases thermal
management capacity.

[217–219]

PV/T hybrid systems

To optimise energy generation,
they control the temperature of
the cells and convert excess heat
into thermal energy through a
combination of photovoltaic
and thermal systems.

They maintain low temperatures in
the cells and simultaneously
generate thermal energy,
substantially improving
electrical efficiency.

[220,221]

Anti-reflective coating

They reduce light reflection on
the surface of the cells,
increasing absorption and
efficiency in the conversion of
solar energy.

The application of these coatings on
photovoltaic solar panels increases
their performance.

[222,223]

Infrared reflective coatings

They act as infrared radiation
reflectors, thereby reducing heat
build-up and alleviating the
drop in efficiency associated
with the thermal effect.

These radiative cooling strategies,
through these coatings,
demonstrate reduced heat loss and
longer operational life for the
systems, increasing efficiency,
especially in high solar irradiance.

[224,225]

Bifacial

They are vertical or inclined
bifacial panels that increase the
capture of direct or reflected
solar radiation from the ground,
i.e., from both the front and
rear surfaces.

They produce more energy than
monofacial panels due to their
shape, providing optimal
performance in variable irradiation
conditions. Their production
increases by between 10% and 20%
depending on the albedo and angle
of inclination, and can reach
around 32%.

[226,227]
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Table 5. Cont.

Technologies

Technique/Type Description Results Reference

Bifacial + reflectors

They have different reflector
designs incorporated into
bifacial modules which direct
additional solar radiation to
the panels.

They improve energy capture in
variable temperature and radiation
conditions, increasing the albedo
effect, with an increase of around
35% in annual electricity generation
when installed in conditions of
reflectivity greater than 50% and
with a rate of transparent space
greater than 30%.

[228,229]

Bifacial with tracking
They adjust the orientation in
the sun’s path, maximising sun
exposure throughout the day.

In regions with higher albedo,
annual production is higher than
that of monofacial systems, with a
gain of 15% to 25%, minimising
losses from the angle of incidence.

[230]

The use of technologies that mitigate the effects of temperature and radiation on
photovoltaic solar panels, as shown in Table 5, depends on factors such as estimated
operating costs, system life, and operating and maintenance requirements, since each of
them has different details in terms of application and necessary components. Those that
use active cooling techniques have an estimated installation cost of $0.05–0.20/W and a
levelised cost of energy (LCOE) of 0.018–0.032 $/kW and require little maintenance, but
periodic monitoring. Active cooling systems, on the other hand, require regular equipment
maintenance and have an estimated installation cost of 0.15–0.30 $/W and an LCOE of
0.045–0.075 $/kW [231]. In systems with hybrid technology, the installation cost is equal to
the LCOE of between 0.025 and 0.040 $/W [231]. In bifacial systems or those associated
with reflectors or tracking systems, initial costs are high when compared to cooling systems,
and due to the complexity of the mechanical systems, adjustments and inspections must be
performed regularly.

Continuous improvement in research to address the performance challenges of solar
photovoltaic systems should contribute to the longevity and reliability of these systems,
which are subject to a variety of environmental conditions. The integration of bifacial and
cooling technologies and other innovative solutions to mitigate the effects of temperature
and radiation on solar photovoltaic systems show considerable gains in conversion effi-
ciency and thermal fluctuation management but also require a careful approach due to
their particularities in installation and economic viability and long-term maintenance.

7. Discussion and Final Considerations
The performance of photovoltaic solar modules is directly and significantly influenced

by environmental factors, particularly photovoltaic converters, which are affected by the
relationship between temperature and solar radiation, as they play a key role in energy
production and in optimising the energy efficiency of photovoltaic solar systems.

The main catalyst for photovoltaic solar energy production is radiation. It determines
the magnitude of the photocurrent and, as a consequence, drives the overall energy pro-
duction of the entire system [232]. On the other hand, it is known that part of the radiation
through the photovoltaic effect serves to convert solar energy into electrical energy, and
a large part is converted into thermal energy, contributing to the temperature balance of
the surface of the photovoltaic panels, negatively affecting the photoelectric conversion
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efficiency [233]. Fluctuations in radiation throughout the day lead to intermittent energy
production, making it necessary to incorporate dynamic forecasting and analysis models in
order to manage the fluctuations that affect solar energy production [234].

However, as the temperature rises, it typically causes a reduction in efficiency of
0.4–0.5% per degree Celsius above 25 ◦C and in the power output of photovoltaic modules
in hotter climates [235]. The operating temperature of the solar module is limited by the
balance between the heat generated and the heat lost to the environment [235].

Understanding the relationship between temperature and radiation is essential, as
solar photovoltaic technologies perform best under high radiation and moderate temper-
atures. Optimising the performance of these systems requires a balance between these
parameters, introducing intelligent management language with integrated models and
real-time monitoring in order to adapt the system to environmental fluctuations. At the
same time, new technological approaches and innovative solutions for mitigating the effects
of temperature and solar radiation must be taken into account in order to bring to the
market systems that are more efficient and resilient to environmental fluctuations, capable
of maintaining their performance throughout their useful life cycle.

Limitations in the Literature and Future Perspectives

Despite significant advances in understanding the relationship between solar radiation
and temperature, there are several published studies on the effects, but they require more
comprehensive exploration. As these are critical parameters that impact the performance of
solar modules, they should provide a more detailed approach to the complex and dynamic
interaction between them under various environmental conditions. This fact is corroborated
by Kotz et al., who provide evidence of continuous changes in temperature fluctuations as
a consequence of palpable anthropogenic climate change, which in turn requires discussion
through localised assessments [236].

Many studies focus on standard approaches, often overlooking the complex and
dynamic interaction between radiation and temperature under different environmental
conditions. In turn, future considerations should include the development of research
outside the operational scope, aimed at creating increasingly interactive and comprehensive
mathematical models with various variables, incorporating the factor of reliability and
long-term maintenance, the influence of microclimatic effects on temperature profiles
and performance, as well as spectral variations in radiation in field situations in various
solar technologies.

Future research should prioritise the development and validation of a coupling index
capable of making quantitative evaluations of the joint effect of temperature and solar
irradiance on photovoltaic (PV) module performance. Such a metric would provide a
rational basis for comparing different technologies, climates, and operating conditions,
while also providing a foundation for system-level predictive modelling and optimisation.
Meanwhile, research must address the particular challenges facing each photovoltaic route.
Even mature crystalline silicon modules require new thermal management approaches,
innovative cooling, and improved encapsulant materials, to lessen efficiency losses at-
tributed to heat. CIGS modules could benefit from improved protective and barrier layers
in order to buffer against their sensitivity to humidity and thermal variations. The most
urgent developments are needed by the perovskite technologies, with priority areas be-
ing long-term material stabilisation, scalable encapsulation methods, and compositional
engineering in order to withstand joint UV and thermal stress. Beyond these technology-
specific developments, overarching innovations in multifunctional materials in the form of
nanocomposites and phase-change layers and in standardised long-term tests are essential.
Together, these efforts, supported by the development of a tested and validated coupling
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index, will accelerate innovation, increase robustness, and allow fair comparisons among
technologies in support of broad deployment.

There is evidence of success in the development of new materials that are less sensi-
tive to thermal fluctuations, which have a positive impact on conversion efficiency and
performance over the long term and in extreme environmental conditions. On the other
hand, industries must begin to incorporate these technologies, as well as cooling and
maximum power point tracking (MPPT) algorithms, in an integrated manner into solar
technologies as a way to reverse the issue of thermal management, which causes significant
losses in the long term, degrading and reducing the useful life of the systems. Due to the
growing demand for renewable technologies, it is essential for industries to bring together
market trends with a view to new innovative technological research that impacts long-term
conversion efficiency, and mitigating losses resulting from adverse environmental condi-
tions, preventing premature degradation of modules and maintaining systems operational
throughout their life cycle.

8. Conclusions
Photovoltaic (PV) module performance is dynamically regulated by the interaction

between solar radiation and temperature, which remain important parameters for system
efficiency optimisation and technological advancement. Effective control of these vari-
ables entails the integration of predictive modelling into field monitoring systems for the
minimization of performance losses, ensuring stable operation.

Several significant challenges still exist in the field: (i) high operating temperatures
worsen material degradation and efficiency losses, (ii) ultraviolet-induced photochemical
degradation compromises long-term stability, particularly in new PV technologies, (iii) ab-
sence of a standard metric for quantifying the combined influence of temperature and
irradiance makes inter-study comparison problematic, and (iv) insufficiently standardised
long-term test protocols limits confidence in degradation data.

Looking ahead, a quantitative coupling index to integrate performance assessment—a
tool we are actively developing in a follow-up study through simulation and validation—
must be a research priority going forward. Additional efforts are justified to develop
state-of-the-art materials (e.g., nanocomposite coatings, multifunctional encapsulants, and
thermal-regulating layers) to withstand coupled stressors, integrate AI-enabled predictive
models and digital twins for real-time monitoring, and standardise accelerated testing
protocols across technologies. Advances in this direction will increase the competitive-
ness, lifetime, and sustainability of PV systems for their long-term service to the world’s
energy transition.
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[CrossRef]

127. Soumya, B.S.; Nirmala Bai, L.; Monikashree, T.S. Power Saving Microcontroller based Robotic Solar Tracking Mechanism. Int. J.
Comput. Appl. 2016, 153, 10–12. [CrossRef]

https://doi.org/10.1002/pip.2549
https://doi.org/10.3390/app11157064
https://doi.org/10.1109/CENCON.2015.7409548
https://doi.org/10.18517/ijaseit.6.5.938
https://doi.org/10.1016/S0960-1481(98)00109-8
https://doi.org/10.1016/j.asej.2022.101984
https://doi.org/10.3390/app10217919
https://doi.org/10.33003/fjs-2023-0702-2044
https://doi.org/10.1016/j.enconman.2019.01.029
https://doi.org/10.1016/j.egyr.2015.09.001
https://doi.org/10.5120/cae2019652820
https://doi.org/10.3390/nano12101767
https://doi.org/10.1051/matecconf/201814404004
https://doi.org/10.11591/ijeecs.v28.i3.pp1297-1308
https://doi.org/10.1016/j.ecmx.2025.100928
https://doi.org/10.1051/matecconf/202133503002
https://doi.org/10.3390/su162310566
https://doi.org/10.48550/arXiv.2003.08871
https://doi.org/10.3390/catal13040728
https://doi.org/10.3390/buildings13102655
https://doi.org/10.1051/bioconf/20181002014
https://doi.org/10.31590/ejosat.418559
https://doi.org/10.5120/ijca2016912058


Energies 2025, 18, 5072 29 of 33

128. Diez, F.J.; Martínez-Rodríguez, A.; Navas-Gracia, L.M.; Chico-Santamarta, L.; Correa-Guimaraes, A.; Andara, R. Estimation of the
Hourly Global Solar Irradiation on the Tilted and Oriented Plane of Photovoltaic Solar Panels Applied to Greenhouse Production.
Agronomy 2021, 11, 495. [CrossRef]

129. Seme, S.; Štumberger, G. Single or dual axis trackers, control systems and electric drive losses for photovoltaic applications.
Renew. Energy Power Qual. J. (REPQJ) 2013, 11. [CrossRef]

130. Sani, M.; Sule, A. Effect of Temperature on the Performance of Photovoltaic Module. Int. J. Innov. Sci. Res. Technol. 2020, 5,
670–676. [CrossRef]

131. Flynn, T.; Chandra, S.; Ortega, A.; McCormack, S. Assessment of large-area luminescent solar concentrators as building-integrated
geodesic dome panels. Sustain. Build. 2023, 6, 7. [CrossRef]

132. Kumar, M.S.; Balasubramanian, K.R.; Maheswari, L. Effect of Temperature on Solar Photovoltaic Panel Efficiency. Int. J. Eng. Adv.
Technol. 2019, 8, 2593–2595. [CrossRef]

133. Gholami, H.; Nils Røstvik, H. Dataset for the Solar Incident Radiation and Electricity Production BIPV/BAPV System on the
Northern/Southern Façade in Dense Urban Areas. Data 2021, 6, 57. [CrossRef]

134. Ooshaksaraei, P.; Sopian, K.; Zulkifli, R.; Alghoul, M.A.; Zaidi, S.H. Characterization of a Bifacial Photovoltaic Panel Integrated
with External Diffuse and Semimirror Type Reflectors. Int. J. Photoenergy 2013, 2013, 465837. [CrossRef]

135. Olusola, O.S.; Israel, E.; Oluwafemi, O.; Babatunde, A. Determination of Optimal Solar Power and Corresponding Tilted Angle in
Different Geoclimatic Zones in Nigeria. J. Energy Res. Rev. 2020, 6, 33–48. [CrossRef]

136. Márquez-García, A.; Varo-Martínez, M.; López-Luque, R. New Model for the Estimation of Solar Radiation on Façades in Urban
Environments. Renew. Energy Power Qual. J. (REPQJ) 2014, 12. [CrossRef]

137. Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew.
Sustain. Energy Rev. 2013, 21, 798–821. [CrossRef]

138. Mohammadi, K.; Khorasanizadeh, H.; Shamshirband, S.; Tong, C.W. Influence of introducing various meteorological parameters
to the Angström–Prescott model for estimation of global solar radiation. Environ. Earth Sci. 2016, 75, 219. [CrossRef]

139. Vernet, A.; Fabregat, A. Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula.
Energies 2023, 16, 2560. [CrossRef]
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