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Abstract

Herein, we investigate structural and thermal characteristics of clay,
fly ash, and their respective mixtures, with a particular focus on the
influence of sintering. Employing a comprehensive suite of analytical
techniques, including X-ray fluorescence analysis (XRF), scanning
electron microscopy (SEM), X-ray diffraction (XRD), and Fourier
transform infrared spectroscopy, the inquiry seeks to elucidate the
intricate alterations and transformations arising from the sintering

process and the integration of fly ash.

The calcination process applied to the raw materials resulted in
the formation of diverse phases, including enstatite, spinel, anorthite,
mullite, corundum, and cristobalite. Similarly, the fly ash/clay
mixtures exhibited distinct phases, such as wollastonite, periclase, and
cordierite, indicative of the structural changes induced by the sintering
process. The application of SEM further provided insights into the
morphological characteristics of the raw materials, revealing variations
in shapes and sizes, thereby contributing to a comprehensive
understanding of the compositional and structural modifications
incurred during sintering. These phases guarantee thermal stability,
ensuring the production of lightweight ceramics materials
characterized by low thermal conductivities and high strength. These
materials present themselves as promising candidates for applications

in refractory settings.
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1. Introduction

The escalating demand for materials exhibiting diverse properties,
encompassing chemical, mechanical, thermal, and environmental attributes,
has underscored the imperative for continuous research and development
in the realm of ceramic materials. This pursuit is pivotal in advancing
technological and industrial domains while preserving environmental
integrity. Within this context, the investigation into refractory ceramics
has gained prominence, particularly those rich in alumina due to their
consequential mechanical, thermal, and electrical properties [1]. However,
the conventional sintering processes employed for these materials necessitate
exceedingly high temperatures, contributing to substantial energy

consumption and environmental degradation [2].

To address these challenges, the current study endeavors to formulate
novel mixtures by combining ceramic materials with low thermal resistance
components, with the objective of achieving consolidation at lower
temperatures. The significance and value of this research lie in its potential
to mitigate the environmental impact associated with traditional sintering

techniques.

Central to this investigation is the exploration of fly ash, a predominant
byproduct of coal combustion in power plants. The composition of fly ash,
characterized by its significant aluminum and silicon content, closely mirrors
that of various ceramic materials, making it a subject of considerable interest
in numerous studies, particularly those examining its application in
the production of cordierite [3] and mullite [4] ceramics. Despite its
potential, coal fly ash contributes significantly to environmental concerns,
precipitating water, air, and soil contamination [5]. Notably, the global
production of coal fly ash is estimated at a staggering 780 million metric
tons [6]. Although utilized to some extent in construction materials, not
exceeding 25 wt.% of its total production [7], the imperative to discover

novel approaches for recycling fly ash remains of paramount importance.
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Moreover, a concurrent exploration into the amalgamation of fly ash
with steel slag is presented, with a focus on the effect of the CaO/SiO, ratio
on phase transitions. This study resulted in the development of optimized
anorthite-based ceramics, exhibiting notable thermal and dielectric
properties, presenting potential applications in insulation technology [8].
Furthermore, investigations into the combination of fly ash and steel slag
illuminated the effects of cordierite crystallization with the anorthite phase,
yielding ceramics with promising mechanical strength, thermal properties,

and applicability in electronic devices [9].

Consequently, the principal objective of this study is to evaluate a local
clay by incorporating varying proportions of fly ash sourced from thermal
power stations. This evaluation aims to discern the influence of fly ash
addition on the thermal and chemical properties of clay, contributing to
a nuanced understanding of sustainable material utilization in diverse

applications.
2. Materials and Methods

2.1. Samples sources

The specimens under investigation were derived from distinct source
materials, namely red clayey soil (Arg.b) procured from the Demnate site in
close proximity to Marrakech, and industrial waste in the form of fly ash
(C.V) generated at the Jorf Lasfar office situated in the city of El Jadida.

2.2. Preparation of test samples

A beaker containing 10g of the composite mixture was subjected to the
addition of 150ml of distilled water. Following a 30-minute stirring period,
the resulting mixtures were subsequently transferred to an oven set at 100°C
for a duration of 24 hours. The resulting powder underwent a grinding
process and subsequent heat treatment within a muffle furnace, where
varying temperatures (900°C, 1000°C, 1100°C, and 1150°C) were applied
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for two hours at a controlled heating rate of 1°C/min. The comprehensive

mass percent composition of the formulated mixtures is presented in Table 1.

Table 1. Mass percent composition of the prepared formulations

Mass percent of mixtures component %
Formulations/component
Arg.b (OAY
ArgCV; 50 50
ArgCV, 10 90
ArgCV, 30 70
Clay (Arg.b) 100
Fly ash (C.V) - 100

2.3. Characterization techniques

Various experimental techniques were applied to the raw, calcined, and
sintered powder samples. The chemical composition of the initial materials
was determined through X-ray fluorescence analysis (XRF) utilizing the
“Philips PW X’PERT MPD” X-ray diffractometry device, employing
a wavelength of K = 1.5406A and scanning within the interval [5°, 80°].
X-ray diffraction analysis (XRD) was performed on both raw and calcined
materials using the same device, scanning within the range [5°, 80°] and

employing a wavelength of K = 1.5406A.

Fourier transform infrared spectroscopy (FTIR) analysis was conducted
on raw and calcined materials using pellets containing 1% of the mass of the
mixture and 99% potassium bromide (KBr). This analysis was carried out
with a Fourier transform spectrometer (VERTEX 70) over a wave number
range of 400cm™ to 4000cm™.

Morphological analysis of the raw powder was executed using a
scanning electron microscope (SEM) equipped with an EDS detector (Falcon
EDAX) on a TESCAN VEGA3.
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3. Results and Discussion

3.1. Chemical composition (XRF) of starting materials

The X-ray fluorescence (XRF) analysis of raw materials, as depicted in
(Table 2) reveals notable compositions in the clay sample, particularly
substantial percentages of silica (30.99% SiO,) and alumina (10.49% Al,Os).
Additionally, the clay sample exhibits elevated levels of MgO and
CaO compared to other oxide contents. In contrast, the fly ash analysis
indicates a predominant presence of silica (48.84%) and alumina (32.79%),
accompanied by significant percentages of Fe,0;, CaO, and MgO. Traces of
K,0, P,Os, Na,O, and SO; are also observed.

This analysis underscores that fly ash primarily comprises silica
and alumina, which contribute to the refractory characteristics of ceramic
materials. However, it also contains noteworthy quantities of oxides with a
melting nature, including Fe,0;, CaO, K,0, Na,0, and MgO.

Table 2. XRF analysis of raw materials

Samples Arg.b (OAY
Si0, % 30,99 48,84
ALO; % 10,49 32,79
MgO % 6,18 1,46
Fe,0; % 0,67 6,12
K;0 % 24 1,12
TiO, % 0,47 -
Ca0 % 4,1 4,37
P,Os % - 0,51
Na,O % - 0,06
SO; % - 0,44

3.2. Mineralogical composition (X-rays and FTIR) of starting materials

The X-ray diffractograms (Figure 1) and FTIR spectra (Figure 2) of
the initial samples (Arg.b and C.V) demonstrate distinct mineralogical

compositions between the two specimens. The X-ray diffraction spectrum of
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Demnate clay (Arg.b) exhibits characteristic peaks associated with quartz
(Q), vermiculite (V), kaolinite (K), muscovite (M), and hematite (H).
Conversely, the X-ray diffraction spectrum of fly ash (C.V) indicates
the presence of characteristic peaks for quartz (Q) and mullite (M). The

affirmation of these identified phases is further supported by the infrared
analysis.
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Figure 2. FTIR pattern of untreated raw materials.
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Notably, the X-ray diffractograms within the 20 to 30 range in (Figure
1), depicting the raw materials, reveal a curve not aligned with the baseline.
This deviation is attributed to the presence of an amorphous phase high in
silica, a characteristic that is duly corroborated by the observation of an
infrared absorption band at 1000°C (Figure 2) [10]. The corresponding IR
spectrum table is presented in Table 3.

Table 3. FTIR spectrum assignments

Bands cm’™ Assignement References
3560-3418 O-H bond valence vibrations [11]
3442 Vibrations elongations of the O-H bond [12]
1630-1637 O-H bond deformation vibrations of absorbed water [13, 14]
1428-1400 C-O bond valence vibrations of carbonate phase [15]
1007 Valence vibrations of the Si-O bond (kaolinite) [16]
770 Quartz (17
672 OH deformation vibrations
467 Vibrations elongations of the Si-O-Si bond [18]
568-528-1100 |Vibrations of the Si-O-Al bond [19]
763 Vibrations elongations of the Al-O bond [8]

3.3. Morphology of raw materials

The results derived from the Scanning Electron Microscope (SEM)
analysis (Figure 3) and the chemical composition determined through Energy
Dispersive X-ray spectroscopy (EDX) (Figures 4 and 5) conducted on
the initial materials, namely fly ash and clay, reveal distinct morphologies

characterized by various shapes and sizes.

The SEM images illustrate that clay particles manifest as clusters of fine
aggregates and thin pseudo hexagonal platelets, indicative of kaolinite (K).
Additionally, quartz crystals are identified within the clay composition. In
contrast, fly ash particles appear as isolated and contiguous spheres, some
exhibiting hollows, along with cenospheres of varying sizes. The smallest
of these, microspheres, are discernible within pherospheres. The EDX/SEM

analysis underscores that Al, Si and O constitute the principal elements of
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fly ash, with a division into two components: a crystalline phase (mineral)
encompassing quartz and spherical mullite, and an amorphous glass phase
(silica) [20].

Furthermore, the EDX analysis of the Arg.b and C.V samples serves to
validate the chemical compositions ascertained through X-ray fluorescence

analysis.

SEM NV 250%V d WD 11.96 mm
View fledd: 923 ym Det: SE
SEM MAG: .00 kx SEM MAG: 200k SM: RESOLUTION

Figure 3. SEM image of untreated raw materials.
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Figure 4. EDX analysis of untreated clay (Arg.b).
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Figure 5. EDX analysis of untreated fly ash (C.V).

3.4. Effect of calcination temperature on phase evolution

The X-ray diffractograms and FTIR spectra of the initial samples
calcinated at 1100°C and 1150°C are presented in Figures 6 and 7,
respectively. The results reveal that the mineralogical composition of each

sample undergoes variations contingent upon the calcination temperature.
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Figure 6. XRD pattern of treated raw materials at 1000°C and 1150°C
(Arg.b and C.V).
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Figure 7. FTIR spectrum of treated raw materials at 1000°C and 1150°C
(Arg.b and C.V).

In the X-ray diffraction spectrum of Demnate clay (Arg.b), characteristic
peaks of quartz (Q), vermiculite (V), enstatite (E), spinel (S), and anorthite
(A) are discerned. Also, the disappearance of kaolinite (K), muscovite (M),
and hematite (H) is noted in both samples, with vermiculite (V) vanishing at
1150°C. Specifically, the X-ray diffraction of Arg.b calcinated at 1150°C
exhibits characteristic lines of quartz (Q), anorthite (A), enstatite (E), and
spinel (S), while at 1100°C, it shows those of quartz (Q), enstatite (E),
vermiculite (V), and spinel (S). The presence of these phases is corroborated
by infrared analysis, where the absence of the Si-O-Al band at 1100°C is
observed, along with the absence of bands corresponding to the deformation
of OH and valence vibrations of the CO bond due to the temperature

increase up to 1150°C.

The X-ray diffraction spectrum of fly ash (C.V) calcinated at 1100°C
reveals the presence of characteristic peaks of mullite (M) and quartz (Q).
At 1150°C, in addition to the previously mentioned phases, a crystallization
of spinel, corundum, and cristobalite is detected. This crystallization

phenomenon is substantiated by the corresponding infrared spectrum.



360 Hajar Sdira et al.

3.5. Mineralogical composition of (ArgCV=579) calcinated
formulations (X-rays and FTIR)

The X-ray diffractograms (Figure 8) and the FTIR spectra (Figure 9) of
the three formulations (ArgCVi:5,7,9) subjected to calcination at 1100°C

and 1150°C reveal distinct variations in the mineralogical composition of
each formulation contingent upon the calcination temperature.
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Figure 8. XRD pattern of ArgCV;=s5 7 ¢ treated formulations.

In the X-ray diffraction spectrum of ArgCV,, characteristic peaks
of quartz (Q), mullite (M), corundum (C), and periclase (P) are evident.
Notably, periclase (P) emerges at 1100°C, while corundum (C) and periclase
(P) appear at 1150°C. The X-ray diffraction spectrum of ArgCV; exhibits
characteristic peaks of quartz (Q), mullite (M), corundum (C), and
cristobalite (Cr). Additionally, corundum (C) emerges at 1100°C, followed
by the appearance of both corundum (C) and cristobalite (Cr) at 1150°C. The
X-ray diffraction spectrum of ArgCVs displays characteristic peaks of quartz
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(Q), mullite (M), corundum (C), cordierite (Co), and wollastonite (W).
Indeed, cordierite (Co) manifests at 1100°C, with both cordierite (Co) and
cristobalite (Cr) appearing at 1150°C. The presence of these phases is
robustly substantiated and confirmed through infrared analysis.
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Figure 9. FTIR spectrum of ArgCV;=s 7 ¢ treated formulations.

4. Conclusion

In conclusion, this study contributes to the advancement of refractory
material formulations, aiming to enhance their mechanical properties. The
experimental investigation centered on the sintering, physicochemical, and
thermal characterization of raw materials (Arg.b and C.V). The chemical
analysis of Arg.b revealed a composition encompassing silica, alumina,
magnesium oxide, ferric oxide, potassium oxide, titanium dioxide, and
calcium oxide, aligning with its mineralogical constituents of quartz,
vermiculite, kaolinite, muscovite, and hematite. The mineralogical
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composition of Arg.b evolved with the calcination temperature, notably

transitioning at 1150°C to include quartz, enstatite, spinel, and anorthite.

Similarly, the chemical analysis of fly ash (C.V) demonstrated a
composition comprising silica, alumina, magnesium oxide, ferric oxide,
potassium oxide, calcium oxide, phosphorus pentoxide, sodium oxide, and
sulfur trioxide, corresponding to its mineralogical constituents of mullite and
quartz. The mineralogical composition of C.V also transformed with the
calcination temperature, revealing spinel, corundum, and cristobalite at
1150°C. The XRD patterns indicated the emergence of the periclase phase
with an increase in C.V percentage and the emergence of cordierite and
wollastonite with an increase in Arg.b percentage.

In summary, this research illuminates the intricate interplay among
composition, sintering conditions, and structural properties crucial for the
advancement of refractory materials. The findings offer valuable insights for
optimizing formulations tailored to thermal insulation applications. The
identified phases play a pivotal role in ensuring thermal stability, facilitating
the production of lightweight ceramic materials with low thermal
conductivities and high strength. These materials stand out as promising
candidates for a variety of applications within refractory settings.
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