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Abstract. A water system impacted by mining activities was assessed to deter-12 
mine the extent of contamination, in the Trimpancho River mining system, in 13 
Spain. This system is in the Iberian Pyritic Belt, a metallogenic province in the 14 
southwest region of the Iberian Peninsula. Related pollution has been studied by 15 
multiple authors in recent decades. However, a pollution geochemical signature 16 
is not yet defined, even if, a few elements such as Cd, Cr, Cu, Fe, Hg, Mn, Pb, 17 
and Zn reach critical values, much above legislation for surface waters. Mercury 18 
is responsible for the highest level of hazard and therefore is central to defining 19 
water pollution signatures associated with acid drainage. Water samples were 20 
collected at the surface level of the streams, acidified with nitric solution, and 21 
stored in dark glass (only for Hg) and polyethylene containers at 4°C. Samples 22 
were digested with nitric and hydrochloric solutions in a high-pressure micro-23 
wave unit and analyzed in ICP-OES for the majority of metals. Hg was directly 24 
analyzed in a mercury analyzer (NIC MA-3000). Since the chemical element 25 
concentration is compositional, an analysis was conducted to quantify how the 26 
uncertainty of the states of a to-be-predicted variable (mercury) is influenced by 27 
using both raw and centered log-ratio transformation (CLR) data. For that pur-28 
pose, a methodology based on information theory (IT) and implemented through 29 
a Bayesian approach was used to about the obtained results, the normalized en-30 
tropy decreased from 43% (raw data) to 33% (compositional data), and a Contin-31 
gency Table Fit of 21% (raw data) was obtained compared to 71% (compositional 32 
data).  33 
 34 
Keywords: Iberian Pyritic Belt, Pollution geochemical signature, Compositional 35 
data, Information Theory.  36 

1 Introduction   37 

The compositional nature of geochemical data and other geo- and environmental sci-38 

ences has been studied since the 1980s, when J. Aitchison started delving into the de-39 

velopment of compositional data analysis (CoDa), introducing what is now known as 40 
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the log-ratio approach [1, 2, 3]. Specifically, compositional data is a representation of 41 

the parts of a whole, where each of its positive components (D) belonging to a random 42 

vector (Z) carries only relative information [4]. 43 

 In this sense, it is widely recognized that the analysis and interpretation of regional-44 

ized compositions treated as raw data, although still commonly practiced, can easily 45 

lead to spurious correlations [5, 6]. Hence, the adoption of log-ratio transformation 46 

stands endorsed in the realm of environmental sciences, notably within the domains of 47 

geology and geochemistry [7, 8, 9]. One particularity of these analysis domains, such 48 

as contaminant flow control, is that in the field of uncertainty and probabilistic risk 49 

analysis, we can observe that both aleatory or stochastic in-situ uncertainty and epis-50 

temic or subjective in-situ uncertainty are entirely dependent on the quantity and quality 51 

of the available data [10].  52 

Therefore, the present study introduces a novel methodology based on the Infor-53 

mation Theory (IT) introduced by Claude Shannon [11]. The proposed approach rec-54 

ognizes the inherent significance of information theory as a differential tool for uncer-55 

tainty interpretation, thereby tapping into its potential for informed decision-making a 56 

pollution geochemical signature is not yet defined and conducting probabilistic risk 57 

analysis. In this context, it also addresses the need to establish a well-informed pollution 58 

geochemical signature. For these purposes, a Bayesian machine learning (BayesianML) 59 

framework was developed to systematically assess regionalized compositions treated 60 

as raw data and establish a comparison with transformed variables using the centered 61 

log-ratio transformation (clr). 62 

2 Materials and Methods 63 

2.1 Data collection 64 

The contamination levels of the Trimpancho River mining system in Spain, located in 65 

the metal-rich Iberian pyritic belt, were assessed. Water samples were collected from 66 

surface streams and tested for various elements including Al, Ca, Co, Cr, Cu, Fe, K, 67 

Mg, Mn, Na, Ni, Pb, Zn, Sulfate, Phosphate, Nitrate, and Hg. For the analysis of the 68 

metallic elements, samples were acidified using a nitric solution, stored in polyethylene 69 

containers at 4°C, and processed using a high-pressure microwave unit with nitric and 70 

hydrochloric solutions. Analysis was conducted using ICP-OES. Mercury was deter-71 

mined in refrigerated samples stored in dark glass containers, using a mercury analyzer 72 

(NIC MA-3000) based on thermal decomposition, gold amalgamation, and cold vapor 73 

atomic absorption spectroscopy detection. Nitrates, phosphates, and sulfates were ana-74 

lyzed in non-acidified samples, nitrates by a portable photometer, and phosphates and 75 

sulfates by UV-Vis spectrophotometry. 76 

2.2 Data transformation 77 

The initial step of the analysis entails the transformation of the raw data to real space 78 

(clr-coefficients) based on the centred log-ratio transformation (clr) [3]. To that end, 79 

the compositional data transformation was performed using CoDaPack v2 software [12] 80 
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x
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 ] = [ln

x1

gD(x)
, ln

x2

gD(x)
, … , ln

xD

gD(x)
] (1) 81 

where 𝐲 ∈ ℝD−1 and gD(x)is the geometric mean of the parts involved. 82 

2.3 Entropy and Mutual Information 83 

The objective of knowledge modeling and reasoning with BayesianML is to anticipate 84 

and understand the consequences of uncertainty, whether positive or negative. For that, 85 

one can express the quantification of normalized uncertainty Hn(x) associated with the 86 

probability distribution of a variable X or a set of variables Ԍ as [11, 13]: 87 

 Hn(X) =
H(X)

log2(ɸx)
=

− ∑ p(xi)x∈X log2(p(xi))

log2(ɸx)
 (2) 88 

 where 𝑥𝑖,…, 𝑥𝑛 represent the potential outcomes of X, each occurring with a corre-89 

sponding probability of p(xi), … , p(xn), while ɸx represents the total number of states 90 

of a variable X. In addition to Shannon's entropy expression, another essential parame-91 

ter in information theory is the mutual information (MI). The MI conceptually describes 92 

the interdependence between two variables, X and Y, by means of their information 93 

content. Mathematically, from an entropy perspective, MI can be expressed as: 94 

 MI(X, Y) = H(X) − H(X|Y) (3) 95 

where H(X) represents the marginal entropy, and H(X|Y) the conditional entropy.  96 

3 Results  97 

3.1 Exploratory Analysis 98 

In the first stage of analysis, a primary Bayesian model is created to evaluate the asso-99 

ciation rate of variables in terms of probabilistic relationships between nodes (Fig. 1).  100 

 101 
Fig. 1. Association rate analysis between (a) Raw data, and (b) clr data. 102 
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In Fig. 1, a significant improvement can be observed in uncovering potential rela-103 

tionships between variables when transformed compositional data is employed. Addi-104 

tionally, the uncertainty of the CoDa model was reduced from 43% (raw data) to 33%. 105 

Among these results, the most remarkable findings were seen in the Contingency Table 106 

Fit of the compositional data model, with a significant 41% improvement versus the 107 

raw data BayesianML network, from 21% to 70%. 108 

3.2 Supervised Analysis on Hg 109 

Fig. 2 shows the analysis of mutual information. The upper number in the box rep-110 

resents the information exchanged relative to the secondary node, while the red number 111 

refers to the main node. Otherwise, the symmetric measure of the information ex-112 

changed between each node and the target node is graphically represented by the thick-113 

ness of the arc and its distance from the target node. This symmetric representation 114 

means that the amount of information, for example, supplied by node K about Hg is the 115 

same as the amount of information Hg supplied about node K. Thanks to this infor-116 

mation analysis, it is possible to identify the predictive importance of variables such as 117 

Cr, K, Co, Na, and Co for understanding the state of Hg, considering the available data 118 

set in February of 2022. A new campaign was conducted in February 2023 and the new 119 

dataset will be reflected in the calibration model. 120 

 121 

Fig. 2. Radial hierarchy layout from the highest-ranked node to the lowest-ranked information 122 
node. 123 
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4 Discussion  124 

In mine exploration, environmental impacts, among others, the general focus, concern-125 

          m               ’ d                d        y based on the uncertainty arising 126 

from sparse data and not on uncertainty arising from the model, even though the model 127 

is inferred, and its parameters estimated. The total Hg content of the Trimpancho River 128 

water in the present survey is the total Hg. The composition of Hg can be divided into 129 

different forms or pools, such as "dissolved" Hg, Hg associated with particulate and 130 

colloidal matter, volatile elemental Hg0, and labile (or reactive) Hg(II) [14]. The pre-131 

dictive importance of variables such as Cr, K, and Co, for       y’  fate interpretation, 132 

can be explained by the colloid particulate-bound in the Hg forms, which can have 133 

identical association with the signalized elements. Divalent mercury, readily soluble as 134 

HgCl2, can finally explain the importance of Na, usually associated with Cl-, in the 135 

water column of Mediterranean rivers. 136 

5 Conclusions 137 

Considering the definition of future geochemical signatures, for the Trimpancho 138 

R v  ’                      z     , the relationships between elements must be evalu-139 

ated considering the Hg contents in its dissolved forms, in the water column, as well as 140 

the forms in which this element occurs in the deposited sediments, which represent the 141 

largest pool of this element in these polymetallic-sulfide mining areas, which  enrich in 142 

cinnabar (HgS). 143 

The collected samples were log-centred transformed after which a BayesianML 144 

analysis was carried out using the Information Theory fundaments for uncertainty and 145 

mutual information quantification. The findings revealed a significant increase in un-146 

derstanding of the study area by exploring transformed analytical data.  In addition, 147 

CoDa not only facilitated the identification of preferred associations but also provided 148 

a comprehensive framework for defining water pollution signatures. The authors be-149 

lieve that this approach will provide valuable insights that will pave the way for more 150 

effective management and mitigation strategies in the future.  151 
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