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The compositional nature of geochemical data and other geo- and environmental sci-
ences has been studied since the 1980s, when J. Aitchison started delving into the de-
velopment of compositional data analysis (CoDa), introducing what is now known as
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Abstract. A water system impacted by mining activities was assessed to deter-
mine the extent of contamination, in the Trimpancho River mining system, in
Spain. This system is in the Iberian Pyritic Belt, a metallogenic province in the
southwest region of the Iberian Peninsula. Related pollution has been studied by
multiple authors in recent decades. However, a pollution geochemical signature
is not yet defined, even if, a few elements such as Cd, Cr, Cu, Fe, Hg, Mn, Pb,
and Zn reach critical values, much above legislation for surface waters. Mercury
is responsible for the highest level of hazard and therefore is central to defining
water pollution signatures associated with acid drainage. Water samples were
collected at the surface level of the streams, acidified with nitric solution, and
stored in dark glass (only for Hg) and polyethylene containers at 4°C. Samples
were digested with nitric and hydrochloric solutions in a high-pressure micro-
wave unit and analyzed in ICP-OES for the majority of metals. Hg was directly
analyzed in a mercury analyzer (NIC MA-3000). Since the chemical element
concentration is compositional, an analysis was conducted to quantify how the
uncertainty of the states of a to-be-predicted variable (mercury) is influenced by
using both raw and centered log-ratio transformation (CLR) data. For that pur-
pose, a methodology based on information theory (IT) and implemented through
a Bayesian approach was used to about the obtained results, the normalized en-
tropy decreased from 43% (raw data) to 33% (compositional data), and a Contin-
gency Table Fit of 21% (raw data) was obtained compared to 71% (compositional
data).

Keywords: Iberian Pyritic Belt, Pollution geochemical signature, Compositional
data, Information Theory.
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the log-ratio approach [1, 2, 3]. Specifically, compositional data is a representation of
the parts of a whole, where each of its positive components (D) belonging to a random
vector (Z) carries only relative information [4].

In this sense, it is widely recognized that the analysis and interpretation of regional-
ized compositions treated as raw data, although still commonly practiced, can easily
lead to spurious correlations [5, 6]. Hence, the adoption of log-ratio transformation
stands endorsed in the realm of environmental sciences, notably within the domains of
geology and geochemistry [7, 8, 9]. One particularity of these analysis domains, such
as contaminant flow control, is that in the field of uncertainty and probabilistic risk
analysis, we can observe that both aleatory or stochastic in-situ uncertainty and epis-
temic or subjective in-situ uncertainty are entirely dependent on the quantity and quality
of the available data [10].

Therefore, the present study introduces a novel methodology based on the Infor-
mation Theory (IT) introduced by Claude Shannon [11]. The proposed approach rec-
ognizes the inherent significance of information theory as a differential tool for uncer-
tainty interpretation, thereby tapping into its potential for informed decision-making a
pollution geochemical signature is not yet defined and conducting probabilistic risk
analysis. In this context, it also addresses the need to establish a well-informed pollution
geochemical signature. For these purposes, a Bayesian machine learning (BayesianML)
framework was developed to systematically assess regionalized compositions treated
as raw data and establish a comparison with transformed variables using the centered
log-ratio transformation (clr).

2 Materials and Methods

2.1 Data collection

The contamination levels of the Trimpancho River mining system in Spain, located in
the metal-rich Iberian pyritic belt, were assessed. Water samples were collected from
surface streams and tested for various elements including Al, Ca, Co, Cr, Cu, Fe, K,
Mg, Mn, Na, Ni, Pb, Zn, Sulfate, Phosphate, Nitrate, and Hg. For the analysis of the
metallic elements, samples were acidified using a nitric solution, stored in polyethylene
containers at 4°C, and processed using a high-pressure microwave unit with nitric and
hydrochloric solutions. Analysis was conducted using ICP-OES. Mercury was deter-
mined in refrigerated samples stored in dark glass containers, using a mercury analyzer
(NIC MA-3000) based on thermal decomposition, gold amalgamation, and cold vapor
atomic absorption spectroscopy detection. Nitrates, phosphates, and sulfates were ana-
lyzed in non-acidified samples, nitrates by a portable photometer, and phosphates and
sulfates by UV-Vis spectrophotometry.

2.2  Data transformation

The initial step of the analysis entails the transformation of the raw data to real space
(clr-coefficients) based on the centred log-ratio transformation (clr) [3]. To that end,
the compositional data transformation was performed using CoDaPack v2 software [12]
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where y € RP~1 and gp (x)is the geometric mean of the parts involved.

2.3  Entropy and Mutual Information

The objective of knowledge modeling and reasoning with BayesianML is to anticipate
and understand the consequences of uncertainty, whether positive or negative. For that,
one can express the quantification of normalized uncertainty H, (x) associated with the
probability distribution of a variable X or a set of variables G as [11, 13]:

H(X) = Zxex P(xi)loga (p(x4))
H,(X) = = 2
n(X) logz (dx) logz (dx) )

where x;,..., x, represent the potential outcomes of X, each occurring with a corre-
sponding probability of p(x;), ..., p(x,), while ¢, represents the total number of states
of a variable X. In addition to Shannon's entropy expression, another essential parame-
ter in information theory is the mutual information (MI). The MI conceptually describes
the interdependence between two variables, X and Y, by means of their information
content. Mathematically, from an entropy perspective, MI can be expressed as:

MI(X,Y) = H(X) — H(X]Y) 3)

where H(X) represents the marginal entropy, and H(X|Y) the conditional entropy.

3 Results

3.1 Exploratory Analysis

In the first stage of analysis, a primary Bayesian model is created to evaluate the asso-
ciation rate of variables in terms of probabilistic relationships between nodes (Fig. 1).
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Fig. 1. Association rate analysis between (a) Raw data, and (b) clr data.
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In Fig. 1, a significant improvement can be observed in uncovering potential rela-
tionships between variables when transformed compositional data is employed. Addi-
tionally, the uncertainty of the CoDa model was reduced from 43% (raw data) to 33%.
Among these results, the most remarkable findings were seen in the Contingency Table
Fit of the compositional data model, with a significant 41% improvement versus the
raw data BayesianML network, from 21% to 70%.

3.2 Supervised Analysis on Hg

Fig. 2 shows the analysis of mutual information. The upper number in the box rep-
resents the information exchanged relative to the secondary node, while the red number
refers to the main node. Otherwise, the symmetric measure of the information ex-
changed between each node and the target node is graphically represented by the thick-
ness of the arc and its distance from the target node. This symmetric representation
means that the amount of information, for example, supplied by node K about Hg is the
same as the amount of information Hg supplied about node K. Thanks to this infor-
mation analysis, it is possible to identify the predictive importance of variables such as
Cr, K, Co, Na, and Co for understanding the state of Hg, considering the available data
set in February of 2022. A new campaign was conducted in February 2023 and the new
dataset will be reflected in the calibration model.
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Fig. 2. Radial hierarchy layout from the highest-ranked node to the lowest-ranked information
node.
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4 Discussion

In mine exploration, environmental impacts, among others, the general focus, concern-
ing geochemical signatures’ definition is traditionally based on the uncertainty arising
from sparse data and not on uncertainty arising from the model, even though the model
is inferred, and its parameters estimated. The total Hg content of the Trimpancho River
water in the present survey is the total Hg. The composition of Hg can be divided into
different forms or pools, such as "dissolved" Hg, Hg associated with particulate and
colloidal matter, volatile elemental Hg0, and labile (or reactive) Hg(II) [14]. The pre-
dictive importance of variables such as Cr, K, and Co, for Mercury’s fate interpretation,
can be explained by the colloid particulate-bound in the Hg forms, which can have
identical association with the signalized elements. Divalent mercury, readily soluble as
HgCl2, can finally explain the importance of Na, usually associated with CI-, in the
water column of Mediterranean rivers.

5 Conclusions

Considering the definition of future geochemical signatures, for the Trimpancho
River’s pollution characterization, the relationships between elements must be evalu-
ated considering the Hg contents in its dissolved forms, in the water column, as well as
the forms in which this element occurs in the deposited sediments, which represent the
largest pool of this element in these polymetallic-sulfide mining areas, which enrich in
cinnabar (HgS).

The collected samples were log-centred transformed after which a BayesianML
analysis was carried out using the Information Theory fundaments for uncertainty and
mutual information quantification. The findings revealed a significant increase in un-
derstanding of the study area by exploring transformed analytical data. In addition,
CoDa not only facilitated the identification of preferred associations but also provided
a comprehensive framework for defining water pollution signatures. The authors be-
lieve that this approach will provide valuable insights that will pave the way for more
effective management and mitigation strategies in the future.
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