Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/37887

Full metadata record

DC FieldValueLanguage
dc.contributor.authorNunes, Rafael Oleques-
dc.contributor.authorSantos, Joaquim-
dc.contributor.authorSpritzer, André-
dc.contributor.authorBalreira, Dennis G.-
dc.contributor.authorFreitas, Carla M. Dal Sasso-
dc.contributor.authorOlival, Fernanda-
dc.contributor.authorCameron, Helena Freire-
dc.contributor.authorVieira, Renata-
dc.contributor.editorPaes, Aline-
dc.contributor.editorVerri, Filipe A. N.-
dc.date.accessioned2025-02-12T11:36:14Z-
dc.date.available2025-02-12T11:36:14Z-
dc.date.issued2025-
dc.identifier.citationNunes, Rafael Oleques; Santos, Joaquim; Spritzer, Andre; Balreira, Dennis G.; Freitas, Carla M. Dal Sasso; Olival, Fernanda; Cameron, Helena Freire; Vieira, Renata (2025). «Assessing European and Brazilian Portuguese LLMs for NER in Specialised Domains». In: Paes, A., Verri, F.A.N. (eds) Intelligent Systems. BRACIS 2024. Lecture Notes in Computer Science, vol 15412.. s.l., Springer, Cham, 2025, pp 215–230. ISBN: 978-3-031-79029-4. https://doi.org/10.1007/978-3-031-79029-4_15por
dc.identifier.isbn978-3-031-79029-4-
dc.identifier.urihttp://hdl.handle.net/10174/37887-
dc.description.abstractThis paper discusses the impact of Portuguese variants in Large Language Models for the task of named entity recognition (NER) in specialised domains. The tests were made on a Brazilian Portuguese le gal and a European Portuguese historical corpora. The models taken into account are BERTimbau (PT-BR), Albertina (PT-PT and PT-BR), and XML-R (multilingual). The impact was more evident in the Portuguese historical corpus, which resulted in higher F1 measures compared to previous works that did not consider the same language variant. Ad ditionally, the study underscores the impact of model architecture on performance, highlighting the critical role of both linguistic alignment and model size in enhancing NER in specialised domains.por
dc.description.sponsorshipThis work has received funds from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES)- Finance Code 001, the Brazilian funding agency CNPq, and the Portuguese Science Foundation FCT,inthecontext of the projects CEECIND/01997/2017 and UIDB/00057/2020 https://doi.org/10.54499/UIDB/00057/2020por
dc.language.isoengpor
dc.publisherSpringer, Champor
dc.rightsembargoedAccesspor
dc.subjectHumanidades Digitaispor
dc.subjectProcessamento de Língua Naturalpor
dc.subjectNamed Entity Recognitionpor
dc.subjectVariantes do Portuguêspor
dc.subjectLarge Language Modelspor
dc.titleAssessing European and Brazilian Portuguese LLMs for NER in Specialised Domainspor
dc.typebookPartpor
dc.identifier.sharewithDepartamento de Históriapor
dc.identifier.authoremailnd-
dc.identifier.authoremailnd-
dc.identifier.authoremailnd-
dc.identifier.authoremailnd-
dc.identifier.authoremailnd-
dc.identifier.authoremailmfo@uevora.pt-
dc.identifier.authoremailhelenac@ipportalegre.pt-
dc.identifier.authoremailrenatav@uevora.pt-
dc.identifier.scientificarea619por
dc.date.embargo2026-02-15-
dc.identifier.doihttps://doi.org/10.1007/978-3-031-79029-4_15por
Appears in Collections:CIDEHUS - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
2025_BRACIS_2024_Historical_Law_learning.pdf366.52 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois