Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/40329

Title: survlab: Survival Model-Based Imputation for Laboratory Non-Detect Data
Authors: Pereira, Luís
Infante, Paulo
Ferreira, Teresa
Quaresma, Paulo
Keywords: Automatic distribution selection
Data quality validation
Parameter/unit validation
Individual detection limit handling
Realistic imputation
Built-in validation
Efficient implementation
Environmental focus
Issue Date: 2025
Publisher: CRAN
Citation: Pereira L, Infante P, Ferreira T, Quaresma P (2025). survlab: Survival Model-Based Imputation for Laboratory Non-Detect Data. R package version 0.1.0. DOI: 10.32614/CRAN.package.survlab
Abstract: survlab provides functions for imputing non-detect values in environmental laboratory data using survival models (including Tobit models) with automatic distribution selection. Is designed specifically for working with analytical data where measurements fall below detection limits or limits of quantification (LOQ).
URI: https://lpereira-ue.github.io/survlab/
http://hdl.handle.net/10174/40329
Type: other
Appears in Collections:CIMA - Aplicações Computacionais

Files in This Item:

File Description SizeFormat
Survival Model-Based Imputation for Laboratory Non-Detect Data • survlab.pdf551.91 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois